High-temperature friction and wear of titanium carbide hard alloys with an addition of a solid lubricant

1998 ◽  
Vol 37 (7-8) ◽  
pp. 421-424 ◽  
Author(s):  
Yu. G. Tkachenko ◽  
D. Z. Yurchenko ◽  
A. S. Sibel’ ◽  
L. M. Murzin
Author(s):  
Jianliang Li ◽  
Dangsheng Xiong ◽  
Yongkun Qin ◽  
Rajnesh Tyagi

This chapter illustrates the effect of the addition of solid lubricants on the high temperature friction and wear behavior of Ni-based composites. Ni-based composites containing solid lubricant particles both in nano and micrometer range have been fabricated through powder metallurgy route. In order to explore the possible synergetic action of a combination of low and high temperature solid lubricant, nano or micro powders of two or more solid lubricants were added in the composites. This chapter introduces the fabrication of the Ni-based self-lubricating composites containing graphite and/or MoS2, Ag and/or rare earth, Ag and/or hBN as solid lubricants and their friction and wear behavior at room and elevated temperatures. The chapter also includes information on some lubricating composite coatings such as electro-deposited nickel-base coating containing graphite, MoS2, or BN and graphene and their tribological characteristics.


1985 ◽  
Vol 107 (4) ◽  
pp. 437-443 ◽  
Author(s):  
J. K. Lancaster

Transfer lubrication is defined as lubrication provided by the continuous transfer of solid lubricant to sliding/rolling interfaces. The lubricant may either be incorporated within a self-lubricating composite or supplied from an auxiliary component. Both routes require similar research information on the factors influencing film formation, friction and wear, and film failure. This paper reviews what is known about these aspects for solid lubricants appropriate to high temperature applications (≥300°C). Areas are identified in which further research is needed.


Author(s):  
I. Khidirov ◽  
V. V. Getmanskiy ◽  
A. S. Parpiev ◽  
Sh. A. Makhmudov

This work relates to the field of thermophysical parameters of refractory interstitial alloys. The isochoric heat capacity of cubic titanium carbide TiCx has been calculated within the Debye approximation in the carbon concentration  range x = 0.70–0.97 at room temperature (300 K) and at liquid nitrogen temperature (80 K) through the Debye temperature established on the basis of neutron diffraction analysis data. It has been found out that at room temperature with decrease of carbon concentration the heat capacity significantly increases from 29.40 J/mol·K to 34.20 J/mol·K, and at T = 80 K – from 3.08 J/mol·K to 8.20 J/mol·K. The work analyzes the literature data and gives the results of the evaluation of the high-temperature dependence of the heat capacity СV of the cubic titanium carbide TiC0.97 based on the data of neutron structural analysis. It has been proposed to amend in the Neumann–Kopp formula to describe the high-temperature dependence of the titanium carbide heat capacity. After the amendment, the Neumann–Kopp formula describes the results of well-known experiments on the high-temperature dependence of the heat capacity of the titanium carbide TiCx. The proposed formula takes into account the degree of thermal excitation (a quantized number) that increases in steps with increasing temperature.The results allow us to predict the thermodynamic characteristics of titanium carbide in the temperature range of 300–3000 K and can be useful for materials scientists.


Alloy Digest ◽  
1964 ◽  
Vol 13 (7) ◽  

Abstract Kentanium K138-A is a high temperature titanium carbide that greatly widens the scope of the engineering design where conditions of intermittent or continuous high temperatures in oxidizing atmospheres are combined with abrasion, and compressive or tensile loads. This datasheet provides information on composition, physical properties, hardness, elasticity, and compressive strength as well as fracture toughness, creep, and fatigue. It also includes information on machining and joining. Filing Code: Ti-40. Producer or source: Kennametal Inc..


2020 ◽  
Vol 39 (1) ◽  
pp. 45-53 ◽  
Author(s):  
Siwen Tang ◽  
Rui Wang ◽  
Pengfei Liu ◽  
Qiulin Niu ◽  
Guoqing Yang ◽  
...  

AbstractWith the concern of the environment, green dry cutting technology is getting more and more attention and self-lubricating tool technology plays an important role in dry cutting. Due to the demand for high temperature performance of tools during dry cutting process, cemented carbide with Ni3Al as the binder phase has received extensive attention due to its excellent high temperature strength and high temperature oxidation resistance. In this paper, WC-TiC-Ni3Al-CaF2 graded self-lubricating material and tools were prepared by microwave heating method, and its microstructure, mechanical properties and cutting performance were studied. Results show that gradient self-lubricating material can be quickly prepared by microwave heating technology, and the strength is equivalent to that of conventional heating technology. CaF2 not only plays a role in self-lubrication, but also refines the grain of the material. A reasonable gradient design can improve the mechanical properties of the material. When the gradient distribution exponent is n1 = 2, the material has high mechanical properties. Cutting experiments show that the WC-TiC-Ni3Al-CaF2 functional gradient self-lubricating tool has better cutting performance than the homogeneous WC-TiC-Ni3Al hard alloys.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3764
Author(s):  
Krzysztof Aniołek ◽  
Adrian Barylski ◽  
Marian Kupka

High-temperature oxidation was performed at temperatures from 600 to 750 °C over a period of 24 h and 72 h. It was shown in the study that the oxide scale became more homogeneous and covered the entire surface as the oxidation temperature increased. After oxidation over a period of 24 h, the hardness of the produced layers increased as the oxidation temperature increased (from 892.4 to 1146.6 kgf/mm2). During oxidation in a longer time variant (72 h), layers with a higher hardness were obtained (1260 kgf/mm2). Studies on friction and wear characteristics of titanium were conducted using couples with ceramic balls (Al2O3, ZrO2) and with high-carbon steel (100Cr6) balls. The oxide films produced at a temperature range of 600–750 °C led to a reduction of the wear ratio value, with the lowest one obtained in tests with the 100Cr6 steel balls. Frictional contact of Al2O3 balls with an oxidized titanium disc resulted in a reduction of the wear ratio, but only for the oxide scales produced at 600 °C (24 h, 72 h) and 650 °C (24 h). For the ZrO2 balls, an increase in the wear ratio was observed, especially when interacting with the oxide films obtained after high-temperature oxidation at 650 °C or higher temperatures. The increase in wear intensity after titanium oxidation was also observed for the 100Cr6 steel balls.


Sign in / Sign up

Export Citation Format

Share Document