scholarly journals Diversity and Distribution of Heavy Metal-Resistant Bacteria in Polluted Sediments of the Araça Bay, São Sebastião (SP), and the Relationship Between Heavy Metals and Organic Matter Concentrations

2016 ◽  
Vol 72 (3) ◽  
pp. 582-594 ◽  
Author(s):  
Bruna Del Busso Zampieri ◽  
Aline Bartelochi Pinto ◽  
Leonardo Schultz ◽  
Marcos Antonio de Oliveira ◽  
Ana Julia Fernandes Cardoso de Oliveira
2018 ◽  
Vol 7 (1) ◽  
pp. 28-40
Author(s):  
Bikram Gautam ◽  
Rameshwar Adhikari

Wastewater treatment plant is a potential reservoir contributing to the evolution and spread of heavy metal and antibiotic resistant bacteria. The pollutants such as biocides, antibiotics, heavy metals are to be feared for as they have been known to evoke resistance in microorganisms in such polluted environment. The aim of this study was to the isolate bacteria from the treated wastewater and assess the resistance pattern of the isolates against antibiotics and heavy metals. Grab sampling was performed from April to June 2017, from the treated effluent from the secondary treatment plant. To assess the resistance pattern for antibiotic(s) and heavy metal(s), antibiotic susceptibility test and minimum inhibitory concentration by cup well method were performed respectively. Staphylococcus aureus, Enterococcus faecalis, Citrobacter freundii, Escherichia coli, Enterobacter aerogenes, Proteus mirabilis, P. vulgaris, Salmonella Typhi, Pseudomonas aeruginosa were isolated. Multi drug and heavy metal resistant isolates were screened. Fisher’s exact test revealed that there is a significant association (p< 0.001) between antibiotic resistance pattern and resistance patterns at dilution of 2500 g/L (25%). Cramer’s V test revealed that the effect size of antibiotic resistance pattern and heavy metal resistance pattern at dilution 2500 g/L is medium. P. aeruginosa was able to resist the metal concentration up to 10000 g/L (100%) dilution of Fe++. Heavy metal resistant bacteria can be safely used to lower chemical concentration in the environment once their harmful genes are edited, knocked etc. so that risks of evoking antibiotic resistance could be minimized. 


2021 ◽  
Vol 926 (1) ◽  
pp. 012096
Author(s):  
B J Kepel ◽  
W Bodhi ◽  
Fatimawali ◽  
T E Tallei

Abstract Environmental pollution from heavy metals is becoming a growing concern due to the adverse effects it is causing throughout the world. This study aims to analyze heavy metal concentrations and identify heavy metal resistant bacteria in the bay of Manado. Sediment samples were collected from five bays in Manado. The concentrations of heavy metals As, Cd, Cr, Hg and Pb were analyzed using ICP-OES, and Hg using CV-AFS. Bacteria from the sediment were grown in nutrient broth media containing heavy metals As, Cd, Cr, Hg and Pb respectively. Microbiology and 16SrRNA gene analysis were used to identify the bacteria that grown on media containing varying concentrations of heavy metals. The results showed that the sediments from the five bays in Manado contained heavy metals with an average concentration of As <1mg/kg, Cd 1.8mg/kg), Cr 6.2mg/kg, Hg <0.07mg/kg). and Pb 11.2mg/kg. The results of microbiological and molecular analysis showed that 5 species of heavy metal resistant bacteria were Pseudomonas aeruginosa, Bacillus cereus, Staphylococcus arlettae, Acinobacter sp., and Brevibacterium sp. The five bacteria found to be resistant to heavy metals can be used to detoxify As, Cd, Cr, Hg, and Pb.


2012 ◽  
Vol 66 (10) ◽  
pp. 2041-2048 ◽  
Author(s):  
Benmalek Yamina ◽  
Benayad Tahar ◽  
Fardeau Marie Laure

The uncontrolled discharges of wastes containing a large quantity of heavy metal create huge economical and healthcare burdens particularly for people living near that area. However, the bioremediation of metal pollutants from wastewater using metal-resistant bacteria is a very important aspect of environmental biotechnology. In this study, 13 heavy metal resistant bacteria were isolated from the wastewater of wadi El Harrach in the east of Algiers and characterized. These include zinc-, lead-, chromium- and cadmium-resistant bacteria. The metal-resistant isolates characterized include both Gram-negative (77%) and Gram-positive (23%) bacteria. The Minimum Inhibitory Concentration (MIC) of wastewater isolates against the four heavy metals was determined in solid media and ranged from 100 to 1,500 μg/ml. All the isolates showed co-resistance to other heavy metals and antibiotic resistance of which 15% were resistant to one antibiotic and 85% were multi- and bi-antibiotics resistant. The zinc-resistant species Micrococcus luteus was the much more heavy metal resistant. The results of toxicity tests on Vibrio fischeri showed that the DI50 (5 min) as low as 0.1 carried away luminescence inhibition greater than 50%.


Our Nature ◽  
2009 ◽  
Vol 6 (1) ◽  
pp. 52-57 ◽  
Author(s):  
A. Rajbanshi

Removal of heavy metals from wastewater needs advance chemical technology and is more expensive too. The cheaper alternative for this is the bioremediation using heavy metals resistant microorganisms. In this study, 10 heavy metal resistant bacteria were isolated from oxidation ditch of wastewater treatment plant of Bagmati Area Sewerage Project. These include chromium resistant Staphylococcus spp, Escherichia coli, Klebsiella spp; cadmium resistant Acinetobacter spp, Flavobacterium spp, Citrobacter spp; nickel resistant Staphylococcus spp, Bacillus spp; copper resistant Pseudomonas spp; and cobalt resistant Methylobacterium spp. All the isolates showed high resistance to heavy metals with Minimum Inhibitor Concentration (MIC) for heavy metals ranging from 150 mug/ml to 500 mug/ml. Six resistant isolates showed multiple tolerance to heavy metals. All the 10 isolates also showed antibiotic resistance of which 10% were resistant to single antibiotic and 90% were multi-antibiotic resistant. Heavy metal tolerance test showed maximum microbial tolerance to chromium and minimum tolerance to nickel in mixed liquor sample of oxidation ditch.Keywords: Heavy metal resistant bacteria, multiple tolerance, antibiotic resistance, Guheswori Sewage Treatment Plantdoi: 10.3126/on.v6i1.1655Our Nature (2008)6:52-57


Biomolecules ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 448
Author(s):  
Mahrous Awad ◽  
Zhongzhen Liu ◽  
Milan Skalicky ◽  
Eldessoky S. Dessoky ◽  
Marian Brestic ◽  
...  

Heavy metals (HMs) toxicity represents a global problem depending on the soil environment’s geochemical forms. Biochar addition safely reduces HMs mobile forms, thus, reducing their toxicity to plants. While several studies have shown that biochar could significantly stabilize HMs in contaminated soils, the study of the relationship of soil properties to potential mechanisms still needs further clarification; hence the importance of assessing a naturally contaminated soil amended, in this case with Paulownia biochar (PB) and Bamboo biochar (BB) to fractionate Pb, Cd, Zn, and Cu using short sequential fractionation plans. The relationship of soil pH and organic matter and its effect on the redistribution of these metals were estimated. The results indicated that the acid-soluble metals decreased while the fraction bound to organic matter increased compared to untreated pots. The increase in the organic matter metal-bound was mostly at the expense of the decrease in the acid extractable and Fe/Mn bound ones. The highest application of PB increased the organically bound fraction of Pb, Cd, Zn, and Cu (62, 61, 34, and 61%, respectively), while the BB increased them (61, 49, 42, and 22%, respectively) over the control. Meanwhile, Fe/Mn oxides bound represents the large portion associated with zinc and copper. Concerning soil organic matter (SOM) and soil pH, as potential tools to reduce the risk of the target metals, a significant positive correlation was observed with acid-soluble extractable metal, while a negative correlation was obtained with organic matter-bound metal. The principal component analysis (PCA) shows that the total variance represents 89.7% for the TCPL-extractable and HMs forms and their relation to pH and SOM, which confirms the positive effect of the pH and SOM under PB and BB treatments on reducing the risk of the studied metals. The mobility and bioavailability of these metals and their geochemical forms widely varied according to pH, soil organic matter, biochar types, and application rates. As an environmentally friendly and economical material, biochar emphasizes its importance as a tool that makes the soil more suitable for safe cultivation in the short term and its long-term sustainability. This study proves that it reduces the mobility of HMs, their environmental risks and contributes to food safety. It also confirms that performing more controlled experiments, such as a pot, is a disciplined and effective way to assess the suitability of different types of biochar as soil modifications to restore HMs contaminated soil via controlling the mobilization of these minerals.


2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Muhammad Fauzul Imron ◽  
Setyo Budi Kurniawan ◽  
Siti Rozaimah Sheikh Abdullah

AbstractLeachate is produced from sanitary landfills containing various pollutants, including heavy metals. This study aimed to determine the resistance of bacteria isolated from non-active sanitary landfill leachate to various heavy metals and the effect of salinity levels on the removal of Hg by the isolated bacterium. Four dominant bacteria from approximately 33 × 1017 colony-forming units per mL identified as Vibrio damsela, Pseudomonas aeruginosa, Pseudomonas stutzeri, and Pseudomonas fluorescens were isolated from non-active sanitary landfill leachate. Heavy metal resistance test was conducted for Hg, Cd, Pb, Mg, Zn, Fe, Mn, and Cu (0–20 mg L− 1). The removal of the most toxic heavy metals by the most resistant bacteria was also determined at different salinity levels, i.e., fresh water (0‰), marginal water (10‰), brackish water (20‰), and saline water (30‰). Results showed that the growth of these bacteria is promoted by Fe, Mn, and Cu, but inhibited by Hg, Cd, Pb, Mg, and Zn. The minimum inhibitory concentration (MIC) of all the bacteria in Fe, Mn, and Cu was > 20 mg L− 1. The MIC of V. damsela was 5 mg L− 1 for Hg and >  20 mg L− 1 for Cd, Pb, Mg, and Zn. For P. aeruginosa, MIC was > 20 mg L− 1 for Cd, Pb, Mg, and Zn and 10 mg L− 1 for Hg. Meanwhile, the MIC of P. stutzeri was > 20 mg L− 1 for Pb, Mg, and Zn and 5 mg L− 1 for Hg and Cd. The MIC of P. fluorescens for Hg, Pb, Mg, and Zn was 5, 5, 15, and 20 mg L− 1, respectively, and that for Cd was > 20 mg L− 1. From the MIC results, Hg is the most toxic heavy metal. In marginal water (10‰), P. aeruginosa FZ-2 removed up to 99.7% Hg compared with that in fresh water (0‰), where it removed only 54% for 72 h. Hence, P. aeruginosa FZ-2 is the most resistant to heavy metals, and saline condition exerts a positive effect on bacteria in removing Hg.


RSC Advances ◽  
2017 ◽  
Vol 7 (30) ◽  
pp. 18421-18427 ◽  
Author(s):  
Haiming Wu ◽  
Li Lin ◽  
Guangzhu Shen ◽  
Ming Li

The risk of heavy metals to aquatic ecosystems was paid much attention in recent years, however, the knowledge on effects of heavy metals on dissolved organic matter (DOM) released byMicrocystiswas quite poor, especially in eutrophic lakes.


Author(s):  
Özgür Canpolat ◽  
Metin Çalta

Keban Dam Lake is the second largest dam lake in Turkey. In addition, it has the feature of being one of the most important dam lakes in our country in terms of both aquaculture potential and electricity generation. In this study, fish samples belong to Capoeta trutta caught from Örencik region of Keban Dam Lake were used. The concentrations of some heavy metals (copper, iron, zinc, chromium, nickel, cadmium, arsenic and mercury) in muscle of Capoeta trutta and the potential health risk from consumption of this fish species were examined. In addidion, the relationship between the heavy metal levels and some biological aspects of fish (weight, length and sex) were determined. As a result of the study, it was determined that the most and the least accumulated heavy metals in the muscle tissue of Capoeta trutta were zinc and cadmium respectively. The concentration of heavy metals showed differences according to weight, length and sex of fish. The results were found indicated that heavy metal levels in the muscle tissue of Capoeta trutta are below the tolerable values recommended by EPA, WHO and FAO. Therefore, there is not any risk for human consumption of this fish species.


Author(s):  
Min Zhang ◽  
Xiangchun Wang ◽  
Long Yang ◽  
Yangyang Chu

Heavy metals contaminated sediment has become a worldwide environmental issue due to its great harm to human and aquatic organisms. Thus, economical, effective, and environmentally-friendly remediation technologies are urgently needed. Among which, combined remediation technologies have attracted widespread attention for their unique advantages. This paper introduces combined remediation technologies based on physical-, chemical-, and bio-remediation of heavy metal polluted sediments. Firstly, the research progress in physical-chemical, bio-chemical, and inter-organismal (including plants, animals, microorganisms) remediation of heavy metal polluted sediments are summarized. Additionally, the paper analyzes the problems of the process of combined remediation of heavy metals in river sediments and outlooks the future development trends of remediation technologies. Overall, this review provides useful technology references for the control and treatment of heavy metal pollution in river sediments.


Sign in / Sign up

Export Citation Format

Share Document