Exciting force for a coaxial configuration of a floating porous cylinder and a submerged bottom-mounted rigid cylinder in finite ocean depth

Author(s):  
Abhijit Sarkar ◽  
Swaroop Nandan Bora
Author(s):  
Jiacheng Zhou ◽  
Chao Hu ◽  
Ziqiu Wang ◽  
Zhengfa Ren ◽  
Xiaoyu Wang ◽  
...  

By studying dynamic characteristics of the leaf spring system, a new elastic component is designed to reduce the working load and to a certain extent to ensure the linearity as well as increase the amplitude in the vertical and horizontal directions in vibration screen. The modal parameters, amplitudes, and amplification factors of the leaf spring system are studied by simulation and experiment. The modal results show that the leaf spring system vibrates in horizontal and vertical directions in first and second mode shapes, respectively. It is conducive to loosening and moving the particles on the vibration screen. In addition, it is found that the maximum amplitude and amplification factor in the horizontal direction appear at 300 r/min (5 Hz) while those in the vertical direction appear at 480 r/min (8 Hz), which are higher than those in the disc spring system. Moreover, the amplitude of the leaf spring system increases proportionally with the increase of exciting force while the amplification factors are basically the same under different exciting forces, indicating the good linearity of the leaf spring system. Furthermore, the minimum exciting force occurs in the leaf spring system under the same amplitude by comparing the exciting force among different elastic components. The above works can provide guidance for the industrial production in vibration screen.


Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1054
Author(s):  
Yongmeng Liu ◽  
Yingjie Mei ◽  
Chuanzhi Sun ◽  
Pinghuan Xiao ◽  
Ruirui Li ◽  
...  

The unbalanced exciting force of high-speed rotary asymmetric rotor equipment is the main factor causing rotor vibration. In order to effectively suppress the vibration of the asymmetric rotor equipment, the paper establishes a multistage asymmetric rotor coaxial measurement stacking method that minimizes the exciting force. By analyzing the propagation process of the centroid of the multistage asymmetric rotor assembly and analyzing the relationship between the geometric center and the centroid of a single asymmetric rotor, a multistage asymmetric unbalanced rotor propagation model based on geometric center stacking is established. The genetic algorithm is used to optimize the unbalance of the multistage asymmetric rotors. Combined with the vibration principle under the exciting force, the vibration amplitude of the left bearing at different rotation speeds under the minimization of the exciting force and the random assembly phase is analyzed. Finally, the experimental asymmetric rotors are dynamically measured, combined with the asymmetric rotors’ geometric error measurement experiment. The experimental results confirm that the vibration amplitude of the assembly phase with the minimum exciting force is smaller than the vibration amplitude under the random assembly phase at three-speed modes, and the optimization rate reached 73.2% at 9000 rpm, which proves the effectiveness of the assembly method in minimizing the exciting force.


2013 ◽  
Vol 397-400 ◽  
pp. 451-456
Author(s):  
Qing Chao Yang ◽  
Li Hua Yang ◽  
Yan Ping Chen ◽  
Hao Kai Lai

According to the characteristics of the quasi zero stiffness (QZS) system, a dynamics approximation model is established. The effect of excitation force amplitude, frequency and stiffness on the dynamic characteristics of the system is studied by continuation algorithm. The global bifurcation diagram with a wide range of parameters is achieved by using Poincaré mapping method. Results show that when the exciting force amplitude increases to a certain extent, the system will come into multi-cycle and chaos motion state. When exciting force frequency is lower, the system dynamic behavior is complicated, which is helpful for the engineering optimization design.


2014 ◽  
Vol 875-877 ◽  
pp. 1194-1198
Author(s):  
Fardin Rouzbahani ◽  
M.T. Shervani-Tabar

In this paper, growth and collapse of a cavitation bubble inside a rigid cylinder with a compliant coating (a model of humans vessels) is studied using Boundary Integral Equation and Finite Difference Methods. The fluid flow is treated as a potential flow and Boundary Integral Equation Method is used to solve Laplaces equation for velocity potential. The compliant coating is modeled as a membrane with a spring foundation. The effects of the parameters describing the flow and the parameters describing the compliant coating on the interaction between the fluid and the cylindrical compliant coating are shown throughout the numerical results. It is shown that by increasing the compliancy of the coating, the bubble life time is decreased and the mass per unit area has an important role in bubble behavior.


Author(s):  
Aleš Tondl ◽  
Horst Ecker

Abstract The possibility of cancelling self-excited vibrations of a mechanical system using parametric excitation is discussed. A two-mass system is considered, with the top mass excited by a flow-generated self-exciting force. The parameter of the connecting stiffness between the base mass and the foundation is a harmonic function of time and represents a parametric excitation. For such a system general conditions for full vibration cancelling are derived and presented. By means of numerical simulation the system is investigated for several sets of parameters. The theoretical results are found to be in very good agreement with the results obtained by simulation. Parameter variations show the extent of the parameter space where significant vibration cancelling can be achieved and illustrate possible applications.


2021 ◽  
Author(s):  
Zhipeng Feng ◽  
Liwen Deng ◽  
Xuan Huang ◽  
Pingchuan Shen ◽  
Shuai Liu ◽  
...  

Abstract Flow-induced vibration is an important issue related to the safety and reliability of nuclear reactor, which need to be analyzed and evaluated in the design stage. In order to obtain the input loads and key parameters used in the calculation of flow-induced vibration of reactor vessel internals (RVIs) that need to satisfy the engineering requirements. The typical RVIs are selected as the research object, and the fluid exciting force characteristics are studied based on the computational fluid dynamics methods. The results show that the fluid exciting force acting on the RVIs is a wide-band stochastic process. For upper internal, the largest pressure fluctuation occurs at the guide tubes and support columns located near the outlet. Therefore, it is necessary to pay more attention to these guide tubes and support columns in response analysis. As for core barrel, the root mean square value of the pressure fluctuation changes drastically at the inlet and outlet location. For lower internal, the lower flow field of RVIs is relatively disordered, and its pressure fluctuation possesses irregular characteristics. Each component of lower internal need to be considered in analysis and evaluation.


2010 ◽  
Vol 132 (4) ◽  
Author(s):  
Raja R. Katta ◽  
Andreas A. Polycarpou

A contact mechanics (CM) based model of a fixed-length rigid cylinder impacting a homogeneous elastic-plastic homogeneous body was developed and includes an improved method of estimating the residual depth after impact. The nonlinear elastic behavior during unloading was accounted for to develop an improved coefficient of restitution model. The impact model was applied to study a practical case of a cylindrical feature on the slider of a magnetic storage hard disk drive impacting the disk to predict various critical impact contact parameters. The CM model was validated using a plane strain finite element model and it was found that a cylindrical feature with a longer length results in a substantial alleviation of impact damage.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
L. H. Cao ◽  
J. X. Wang ◽  
P. Li ◽  
P. F. Hu ◽  
Y. Li

The steam exciting force has been proved to be great threat to the operation safety of steam turbines. The mechanism of steam exciting vibration cannot be profoundly revealed by simply analyzing the steam exciting force, especially in simplified models. Therefore, a full-circle stage of steam turbine with shroud and labyrinth seals was investigated by numerical simulator CFX. The instability of leakage flow and the pressure fluctuation were analyzed on the eccentric condition. The effects of leakage vortexes, the depth-width ratio of seal cavity, and the eccentricity on the steam exciting force were studied. Results show that the leakage flow is nonuniform in the circumferential direction with the change of front teeth vortexes, which causes the steam exciting force. The tangential and radial steam exciting force both increase with the eccentricity increasing. The effects of the depth-width ratio of seal cavity on the two forces are different. In addition, the pressure fluctuation caused by the leakage vortexes on the shroud surfaces is a main factor inducing the steam exciting force. This research provides a theoretical guidance for the operation safety and optimization of steam turbines.


Sign in / Sign up

Export Citation Format

Share Document