What is critical for plant thermogenesis? Differences in mitochondrial activity and protein expression between thermogenic and non-thermogenic skunk cabbages

Planta ◽  
2009 ◽  
Vol 231 (1) ◽  
pp. 121-130 ◽  
Author(s):  
Yasuko Ito-Inaba ◽  
Yamato Hida ◽  
Takehito Inaba
2018 ◽  
Vol 19 (11) ◽  
pp. 3580 ◽  
Author(s):  
Michele Costanzo ◽  
Armando Cevenini ◽  
Emanuela Marchese ◽  
Esther Imperlini ◽  
Maddalena Raia ◽  
...  

Methylmalonic acidemias (MMAs) are inborn errors of metabolism due to the deficient activity of methylmalonyl-CoA mutase (MUT). MUT catalyzes the formation of succinyl-CoA from methylmalonyl-CoA, produced from propionyl-CoA catabolism and derived from odd chain fatty acids β-oxidation, cholesterol, and branched-chain amino acids degradation. Increased methylmalonyl-CoA levels allow for the presymptomatic diagnosis of the disease, even though no approved therapies exist. MMA patients show hyperammonemia, ketoacidosis, lethargy, respiratory distress, cognitive impairment, and hepatomegaly. The long-term consequences concern neurologic damage and terminal kidney failure, with little chance of survival. The cellular pathways affected by MUT deficiency were investigated using a quantitative proteomics approach on a cellular model of MUT knockdown. Currently, a consistent reduction of the MUT protein expression was obtained in the neuroblastoma cell line (SH-SY5Y) by using small-interfering RNA (siRNA) directed against an MUT transcript (MUT siRNA). The MUT absence did not affect the cell viability and apoptotic process in SH-SY5Y. In the present study, we evaluate and quantify the alterations in the protein expression profile as a consequence of MUT-silencing by a mass spectrometry-based label-free quantitative analysis, using two different quantitative strategies. Both quantitative methods allowed us to observe that the expression of the proteins involved in mitochondrial oxido-reductive homeostasis balance was affected by MUT deficiency. The alterated functional mitochondrial activity was observed in siRNA_MUT cells cultured with a propionate-supplemented medium. Finally, alterations in the levels of proteins involved in the metabolic pathways, like carbohydrate metabolism and lipid metabolism, were found.


2019 ◽  
Vol 31 (9) ◽  
pp. 1434
Author(s):  
Andressa Dalmazzo ◽  
João D. A. Losano ◽  
Daniel S. R. Angrimani ◽  
Isabel V. A. Pereira ◽  
Marcelo D. Goissis ◽  
...  

The aim of this study was to confirm gene and protein expression of oxytocin receptor (OTR) and sex hormone-binding globulin (SHBG) in the testis and epididymis of dogs, correlating these data with sperm quality and production and testosterone concentrations. Positive correlations were found between OTR and SHBG expression in both the testis and epididymis. Testicular OTR expression was positively associated with plasma membrane and acrosome integrity in canine spermatozoa, whereas SHBG expression in the testis was positively correlated with various sperm characteristics, such as sperm concentration, total and progressive motility, plasma membrane integrity and acrosome integrity. Testicular expression of both OTR and SHBG was negatively correlated with low sperm mitochondrial activity. In the epididymis, SHBG expression was only positively correlated with plasma membrane integrity. Analysis of protein expression revealed that testicular OTR was positively correlated with testosterone concentrations and negatively correlated with the absence of sperm mitochondrial activity. In addition, SHBG expression in the testes was associated with epididymis SHBG expression and morphologically normal cells. Immunohistochemical (IHC) analysis revealed the presence of both OTR and SHBG in testicular smooth muscles and Leydig cells. However, in the epididymis, OTR was only located in smooth muscle cells, whereas neither IHC nor western blotting detected SHBG. Together, the results of this study suggest that OTR and SHBG play key roles in spermatogenesis and sperm maturation, being essential for male reproductive success.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4408-4408
Author(s):  
Alejandra Ortiz-Ruiz ◽  
Yanira Ruiz-Heredia ◽  
Mehmet Samur ◽  
Pedro Aguilar-Garrido ◽  
Maria Luz Morales ◽  
...  

Introduction Mitochondria controls crucial biological pathways such as proliferation, apoptosis and cell growth. However, the implication of mitochondrial activity in the pathogenesis of Multiple Myeloma (MM) still remains unknown and only a few studies connect the mitochondrial status and MM. We planned to decipher the role of the mitochondria in the MM mechanism of resistance and the potential exploitation of mitochondrial activity as a functional target in the MM therapy. Methods In order to understand the role of mitochondria in MM and its therapeutic exploitation, firstly we explored factors involved in the mitochondrial function (c-Myc, HNRNPK, TFAM, NRF1 and EF-Tu) from 770 MM patients RNAseq CoMMpass℠ data. Furthermore, we performed different studies in our MM 77 patients set: gene expression validation by RT-PCR (n=40), protein expression (COXII) by IHC (n=28); and mitochondrial activity (COX activity) by histoenzymatic-HE assay (n=11). Additionally, we analyzed the impact of bortezomib in the mitochondria regulator CD38 in 50 samples (n=30 RVD, n=20 RD regimens), at diagnosis and 6/9 months follow-up MM patients. We have tested the effect of tigecycline, a mitochondrial inhibitor, in three regimens: monotherapy, pre-treament of tigecycline (48h) with consecutive bortezomib treatment, and in combination with bortezomib in the MM cell lines JJN3, L363 and NCI-H929. To characterize the molecular mechanisms underlying the cytotoxic effect of tigecycline we analysed mitochondria load and activity (MitoTracker green and red) OXPHOS expression by WB and COX2 activity by HE assay. Finally, we followed an in vivo experiment in NSG mice (n=40) engrafted with the JJN3-GFP cell line (1x106) via tail vein and treated by 4 weeks. Analysis of the in vivo imaging and survival curve were obtained. Results The higher expression of factors involved in the mitochondrial function such as: c-Myc, HNRNPK, NRF1 and EF-Tu predict MM poor outcomes (Fig.1A). Furthermore, mitochondrial representative gene and protein expression and activity were found increased in MM relapse stage patients. We showed overexpression of C-Myc, TFAM and EF-Tu on the MM relapsed group (Fig. 1B). Moreover, IHC reveals overexpression of mitochondrial COXII protein in relapse MM patients (p-value ** < 0.001) (Fig. 1C). By functional assays we have demonstrated that gene/protein overexpression drives to an increase of activity (COX HE) in MM at relapse (p-value ***< 0.0001). (Fig. 1D). Moreover, we observed an increase of CD38 expression in patients with RVD regimen, but not without bortezomib (RD regimen) (Fig. 1E). Together these results suggest elevation of mitochondrial activity plays a role in the mechanism of resistance to treatment and/or progression of MM and the consequent relapse of the patients. In vitro studies with tigecyline and bortezomib showed cytotoxic effects in three MM cell lines (IC50 JJN3 11,91 µM; IC50 L363 10,21 µM and NCI-H929 26,37 µM, p-value *< 0.05). Moreover, bortezomib and tigecyline showed high levels of synergism (CI 0,19) (Fig. 1F). In fact, the "conditioning" treatment with tigecyline revert the resistance to bortezomib. The cells treated with tigecycline reflect diminishing in the mitochondria respiration by MitoTracker assays, decrease of COX activity and respiratory chain complexes, suggesting a reduction of mitochondrial activity (Fig. 1G). These molecular effects are exacerbated by the tigecycline and bortezomib combination. However, bortezomib monotherapy not decrease or inclusive, increase, all the molecular mechanisms of mitochondria studied. Finally, mice groups treated with tigecycline alone or in combination with bortezomib reported a better survival and lower JJN3-GFP infiltration (p-value *< 0.05) (Fig. 1H). Conclusion To sum up, these findings highlight new vulnerabilities in myeloma cells, suggesting a potential therapeutic target in the treatment of the disease. The metabolic activation of myeloma cells with the collaboration of CD38 and/or c-Myc overexpression or his regulators (e.g. HNRNPK) in response to bortezomib treatment lead an increase of mitochondria respiration. These data confirm the important role of mitochondria in the loss of efficacy in inhibitors of proteasome treatment. Thus, mitochondrial respiration emerges as a novel target in bortezomib relapsed MM patients, and, potentially, in multiple c-Myc, HNRNPK and CD38 overexpression neoplasms. Disclosures Munshi: Adaptive: Consultancy; Oncopep: Consultancy; Janssen: Consultancy; Takeda: Consultancy; Amgen: Consultancy; Celgene: Consultancy; Abbvie: Consultancy.


2021 ◽  
Vol 22 (21) ◽  
pp. 11852
Author(s):  
Tom Kretzschmar ◽  
Mohamed M. Bekhite ◽  
Jasmine M. F. Wu ◽  
Daniela Haase ◽  
Martin Förster ◽  
...  

Doxorubicin (Dox) is a chemotherapeutic agent with cardiotoxicity associated with profibrotic effects. Dox increases ceramide levels with pro-inflammatory effects, cell death, and fibrosis. The purpose of our study was to identify the underlying ceramide signaling pathways. We aimed to characterize the downstream effects on cell survival, metabolism, and fibrosis. Human fibroblasts (hFSF) were treated with 0.7 µM of Dox or transgenically overexpressed ceramide synthase 2 (FLAG-CerS2). Furthermore, cells were pre-treated with MitoTempo (MT) (2 h, 20 µM) or Fumonisin B1 (FuB) (4 h, 100 µM). Protein expression was measured by Western blot or immunofluorescence (IF). Ceramide levels were determined with mass spectroscopy (MS). Visualizations were conducted using laser scanning microscopy (LSM) or electron microscopy. Mitochondrial activity was measured using seahorse analysis. Dox and CerS2 overexpression increased CerS2 protein expression. Coherently, ceramides were elevated with the highest peak for C24:0. Ceramide- induced mitochondrial ROS production was reduced with MT or FuB preincubation. Mitochondrial homeostasis was reduced and accompanied by reduced ATP production. Our data show that the increase in pro-inflammatory ceramides is an essential contributor to Dox side-effects. The accumulation of ceramides resulted in a lipotoxic shift and subsequently mitochondrial structural and functional damage, which was partially reversible following inhibition of ceramide synthesis.


2021 ◽  
Vol 22 (17) ◽  
pp. 9446
Author(s):  
Ruth A. Kelly ◽  
Kristin M. Perkumas ◽  
Matthew Campbell ◽  
G. Jane Farrar ◽  
W. Daniel Stamer ◽  
...  

Previous studies have shown that glaucomatous Schlemm’s canal endothelial cells (gSCECs) are stiffer and associated with reduced porosity and increased extracellular matrix (ECM) material compared to SCECs from healthy individuals. We hypothesised that Schlemm’s canal (SC) cell stiffening was a function of fibrotic changes occurring at the inner wall of SC in glaucoma. This study was performed in primary cell cultures isolated from the SC lumen of human donor eyes. RNA and protein quantification of both fibrotic and endothelial cell markers was carried out on both healthy and gSCECs. Functional assays to assess cell density, size, migration, proliferation, and mitochondrial function of these cells were also carried out. Indeed, we found that gSCECs deviate from typical endothelial cell characteristics and exhibit a more fibrotic phenotype. For example, gSCECs expressed significantly higher protein levels of the fibrotic markers α-SMA, collagen I-α1, and fibronectin, as well as significantly increased protein expression of TGFβ-2, the main driver of fibrosis, compared to healthy SCECs. Interestingly, we observed a significant increase in protein expression of endothelial marker VE-cadherin in gSCECs, compared to healthy SCECs. gSCECs also appeared to be significantly larger, and surprisingly proliferate and migrate at a significantly higher rate, as well as showing significantly reduced mitochondrial activity, compared to healthy SCECs.


2017 ◽  
Vol 126 (02) ◽  
pp. 77-84 ◽  
Author(s):  
Nahum Rosenberg ◽  
Orit Rosenberg ◽  
Abraham Weizman ◽  
Leo Veenman ◽  
Moshe Gavish

AbstractThe 18 kDa mitochondrial translocator protein (TSPO) ligands (10 µM), e. g., protoporphyrin IX, PK 11195 and FGIN-1-27, have different effects on metabolism and protein expression in human osteoblasts. In this study, we investigated the archetypical TSPO specific ligand Ro5-4864 (10 µM) effect in primary osteoblasts in culture aiming to further understand the TSPO role in these mature metabolically active cells.We found that following exposure to Ro5-4864, cellular [18F]-FDG incorporation and ATP content were reduced by 48% (p<0.001) and 44% (p<0.001), respectively. The mitochondrial membrane potential (ΔΨm) increased by 50% (p<0.01), mRNA synthesis of TSPO and voltage dependent anion channel (VDAC1) decreased both by 70%, the TSPO and VDAC1 protein expression decreased by 80% and 68%, respectively (p<0.001). Ro5 4864 caused a decrease in the proportion of cells in the G1 phase (by 20%, p<0.05), shifting the cell cycle to the S and G2/M phases. Furthermore, 63% decrease in hexokinase 2 protein expression (p<0.001) was found. However, we found no significant effects on hexokinase 2 mRNA expression (by RT-PCR). We also did not see significant changes in mitochondrial mass (MitoTracker Green assay), apoptosis rate (TUNEL assay), overall cell death (LDH assay), cellular proliferation (BrdU assay), cell maturation (cellular alkaline phosphatase assay), and the number of cells in the culture.Therefore, an overall effect of Ro5-4864 exhorts is via pathways related to the mitochondrial activity, which is only partly like PK 11195, but not to the other TSPO ligands.


PLoS ONE ◽  
2016 ◽  
Vol 11 (7) ◽  
pp. e0159399 ◽  
Author(s):  
María Calderon-Dominguez ◽  
David Sebastián ◽  
Raquel Fucho ◽  
Minéia Weber ◽  
Joan F. Mir ◽  
...  

2010 ◽  
Vol 104 (12) ◽  
pp. 1760-1770 ◽  
Author(s):  
Manar Aoun ◽  
Francoise Michel ◽  
Gilles Fouret ◽  
Francois Casas ◽  
Melanie Jullien ◽  
...  

High-fat or high-fat–high-sucrose diets are known to induce non-alcoholic fatty liver disease and this is emerging as one of the most common liver diseases worldwide. Some polyphenols have been reported to decrease rat hepatic lipid accumulation, in particular those extracted from red grapes such as resveratrol. The present study was designed to determine whether a polyphenol extract (PPE), from red grapes, modulates liver fatty acid composition and desaturase activity indexes in rats fed a high-fat–high-sucrose (HFHS) diet, and to explore whether sirtuin-1 deacetylase activation was implicated in the effect of the PPE against liver steatosis. The effect of this PPE on mitochondriogenesis and mitochondrial activity was also explored. The PPE decreased liver TAG content in HFHS+PPE diet-fed rats in comparison with HFHS diet-fed rats. The PPE had no effect on liver fatty acid composition, desaturase activity indexes and stearoyl-CoA desaturase 1 (SCD1) gene expression. Sirtuin-1 deacetylase protein expression was significantly increased with the PPE; AMP kinase protein expression was higher with the PPE in comparison with the HFHS rats, but no modification of phosphorylated AMP kinase was observed. Protein expression of phospho-acetyl-CoA carboxylase was decreased in HFHS rats and returned to basal values with the PPE. Finally, the PPE modulated PPARγ coactivator-1α (PGC-1α) but did not modify mitochondriogenesis and mitochondrial activity. In conclusion, the PPE partially prevented the accumulation of TAG in the liver by regulating acetyl-CoA carboxylase phosphorylation, a key enzyme in lipid metabolism, probably via sirtuin-1 deacetylase activation. However, the PPE had no effect on the qualitative composition of liver fatty acids.


2020 ◽  
Vol 14 (2) ◽  
pp. 115-122
Author(s):  
Thanh Trung Nguyen ◽  
Yuki Kambe ◽  
Atsuro Miyata

Background: Major depressive disorder (MDD) is a common psychological disorder worldwide. However, one-third of patients with MDD are resistant to the present antidepressant medicine which regulates monoamine contents in the brain. Thus, another drug target is strongly required. Much evidence strongly suggests that sirtuin1, which is the key factor to regulate mitochondrial activity, may be implicated in MDD. Objective: Since it is suggested that royal jelly (RJ) ameliorated depressive-like behavior and affected mitochondrial activity in mice, we hypothesized RJ could be an alternative medicine against MDD which acts via sirtuin1 signaling to improve mitochondrial activity. Methods: In the present study, we applied a mouse model of MDD to investigate the effect of RJ on the depressive-like behavior and the sirtuin1 signaling on mitochondrial activity. Results: Our results indicated that either the oral administration of RJ for 12 days or single intracerebroventricular (i.c.v.) injection decreased the duration of immobility in the tail suspension test, which suggested that RJ had an antidepressant-like effect. Moreover, sirtuin1 protein expression increased in mice following RJ treatment in the amygdala region, but not in the other brain regions. Similarly, the expressions of oxidative phosphorylation (OXPHOS) related proteins increased in the amygdala regions, but not in the hippocampal regions. Conclusion: The increase of sirtuin1 and OXPHOS protein expression may at least in part contribute to the antidepressant-like effect of the RJ pathway, and RJ may have the potential to be a novel antidepressant drug.


Molecules ◽  
2020 ◽  
Vol 25 (8) ◽  
pp. 1773 ◽  
Author(s):  
Khanyisani Ziqubu ◽  
Christo J. F. Muller ◽  
Phiwayinkosi V. Dludla ◽  
Sinenhlanhla X. H. Mthembu ◽  
Nnini Obonye ◽  
...  

The current study explored the effect of isoorientin on the metabolic activity and lipid accumulation in fully differentiated 3T3-L1 adipocytes. To achieve this, the 3T3-L1 pre-adipocytes were differentiated for eight days and treated with various concentrations of isoorientin (0.1–100 μM) for four hours. Subsequently, the metabolic activity, lipid accumulation, and mitochondrial respiration were assessed. Furthermore, to unravel the molecular mechanisms that might elucidate the bioactivity of isoorientin, protein expression of the genes involved in insulin signaling and energy expenditure, such as AKT and AMPK, were investigated. The results showed that isoorientin, at different doses, could block lipid storage and enhance glycerol release, with a concomitant improvement of the metabolic activity and mitochondrial function. Although the observed beneficial effects of isoorientin on these cultured 3T3-L1 adipocytes were not consistent at all concentrations, it was clear that doses between 1 and 10 μM were most effective compared to the untreated control. Moreover, the activity of isoorientin was comparable to tested positive controls of CL-316,2431, isoproterenol, insulin, and metformin. Mechanistically, protein expression of AKT and AMPK, was enhanced with isoorientin exposure, suggesting their partial role in modulating lipid metabolism and mitochondrial biogenesis. Indeed, our results showed that isoorientin has the ability to enhance mitochondrial respiration, as we observed an increase in the ATP and oxygen consumption rate. Therefore, we concluded that isoorientin has a potential to impact mitochondrial activity, lipid metabolism and energy expenditure using an in vitro experimental model of obesity.


Sign in / Sign up

Export Citation Format

Share Document