scholarly journals Micro-displacement monitoring in caves at the Southern Alps–Dinarides–Southwestern Pannonian Basin junction

Author(s):  
Stanka Šebela ◽  
Josef Stemberk ◽  
Miloš Briestenský

AbstractIn situ micro-displacement monitoring in caves at the seismically active junction of the Southern Alps, Dinarides and Southwestern Pannonian Basin revealed active tectonic micro-deformations. The largest total vertical movement of 0.35 mm (2008–2018) occurred at Kostanjeviška Jama (Southwestern Pannonian Basin–Dinarides). Two abrupt displacements observed at that cave location correspond to pre- and post-seismic episodes in 2014 and 2015. At Pološka Jama (Southern Alps), more gradual and continuous displacement on a monitored bedding plane of 0.13 mm down-slip (2008–2018) was observed. This movement is attributed to slope relaxation as well as tectonic activity on the Julian Alps thrust fault and the seismogenic Ravne Fault, which generated earthquakes at Mw = 5.6 in 1998 and Mw = 5.2 in 2004. At Jama pri Svetih Treh Kraljih in Dinarides, activity on the Ravne Fault was shown as sinistral-horizontal (0.1 mm) and vertical (0.15 mm) movement along an E–W-oriented tectonic structure. This shallowly buried site also experienced cyclic seasonal displacements. At Županova Jama, multiple short-term horizontal dextral and sinistral strike-slip pulses (2016–2018) demonstrated active tectonic micro-deformations within the wider zone of the Dobrepolje and Želimlje faults. At Postojnska Jama, two episodes of vertical movement on a NW–SE-oriented fault are associated with earthquake swarms: the first episode was in 2010 (MLV = 3.7) and the second in 2014 (MLV = 4.3). In-cave flood events do not coincide with periods of micro-displacement activity in the studied caves, and therefore are not the drivers of the micro-displacement.

Author(s):  
Ajeng Sekarkirana Pramesti Kameswara ◽  
Nana Sulaksana ◽  
Murni Sulastri ◽  
P. P. Raditya R.

The research area is very interesting to study to determine the characterization of the active tectonic influence of the Cisanggarung watershed, West Java. The research area is in Kuningan Regency, West Java. The purpose of this study was to determine the Relative Tectonic Activity Index (Iatr) in the Cisanggarung Watershed. Through the method approach used to identify the Relative Tectonic Activity Index (Iatr) using geomorphic indexes, watershed asymmetry factors (Af), watershed shape index (Bs), valley width, and height valley ratio (Vf), and mountainous face sinusitis (Smf). The Iatr research area is divided into 4 classes: Class 1 (very high), class 2 (high), class 3 (medium), and class 4 (low). Iatr distribution in 14 sub-watersheds covering an area of 286.24 km2 is Class 1 around 14.44% of the watershed area (41.35 km2) which is located in sub-watershed 1, with Smf values 1.157, Vf 0.3, Af 72.15, and Bs 4.3. Class 2 around 28.67% of the watershed area (82.09 km2) is located in sub-watershed 14, with Smf values 1.26, Vf 0.77, Af 15.69, Bs 1.01. Class 3 around 54.16% of the watershed area (155.03 km2) is located in sub-watersheds 2, 3, 6, 7, 8, 10, 11, 12, with an average value of Smf 2, Vf 1.54, Af 51.77, Bs 1.75, and Class 4 about 2.71% of the watershed area (7.76 km2) is located in sub- watersheds 4, 5, 9, 13, with an average value of Smf 2.25, Vf 8.18, Af 55.2, Bs 1.65. The results of the morphometric analysis indicated that the study area was mostly affected by tectonics and erosion.


2003 ◽  
pp. 537-543 ◽  
Author(s):  
T Masunari ◽  
K Tanaka ◽  
H Okubo ◽  
H Oikawa ◽  
K Takechi ◽  
...  

2021 ◽  
Vol 13 (2) ◽  
pp. 208-214
Author(s):  
Nafise HOSEINI ◽  
◽  
Shahram BAFTI ◽  
Reza DERAKHSHANI ◽  
Mohammad GHANBARIAN ◽  
...  

Morphotectonic indices are useful instruments for investigating the effect of tectonic activity in a certain region. Calculation of these indicators using the advantages of Geographical Information System, GIS, in a large area is useful for detecting potential disorders related to active tectonics. This method is useful in regions on which few morphotectonic studies have been conducted. An example of such areas can be the watersheds of the Sirch mountainous region. The watersheds of the Sirch region located in Central Iran’s zone in the southeast of Iran are a very ideal zone to evaluate the concepts of these indicators in the prediction of the relative tectonic activity according to the investigation of drainage systems or mountain fronts. Based on the values of the calculated indices including Form Factor (FF), Compaction Coefficient (CC), Ratio of Circularity (RC), Ratio of Elongation (RE), relative Basin Height (BH), and Ruggedness Number (RN), a final indicator called Active Tectonic Indicator (ATI) is obtained. The latter is a combination of the abovementioned indicators and evaluates the morphotectonic activity based on the shape of the watersheds. By measuring and combining these indicators, the tectonic activity stage of the Sirch region was determined by analyzing the watersheds of this region.


Processes ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 755
Author(s):  
Tomislav Malvić ◽  
Maria Alzira Pimenta Dinis ◽  
Josipa Velić ◽  
Jasenka Sremac ◽  
Josip Ivšinović ◽  
...  

The basic principles of geological risk calculation through probability of success (PoS) are mostly applied to numerical estimation of additional hydrocarbon existence in proven reservoirs or potential hydrocarbon discoveries in selected geological regional subsurface volumes. It can be adapted and validated for a comprehensive input dataset collected in the selected petroleum province, by dividing up geological events into several probability categories and classes. Such methodology has been widely developed in the last decades in the Croatian subsurface—mostly in the Croatian Pannonian Basin System (CPBS). Through the adaptation of geological categories, it was also applied in hybrid, i.e., stochastic, models developed in the CPBS (Drava Depression), mostly for inclusion of porosity values. As the robustness of this methodology is very high, it was also modified to estimate the influence of water-flooding in increasing oil recovery in some proven Neogene sandstone reservoirs in the CPBS (Sava Depression). This new modification is presented to be applied to geological risk calculation, intending to assess the safety of geological environment storage in deep wells, where spent nuclear fuel (SPN) would be disposed, a subject of great importance. The conceptual study encompassed the magmatic and metamorphic rocks in the pre-Neogene basement of the CPBS, intended to be used for such purpose. Regionally distributed lithologies are considered for nuclear waste disposal purpose, in order to detect the safest ones, considering petrophysical values, water saturation, recent weathering and tectonic activity.


2011 ◽  
Vol 62 (2) ◽  
pp. 155-169 ◽  
Author(s):  
Wieske Paulissen ◽  
Stefan Luthi ◽  
Patrick Grunert ◽  
Stjepan Ćorić ◽  
Mathias Harzhauser

Integrated high-resolution stratigraphy of a Middle to Late Miocene sedimentary sequence in the central part of the Vienna BasinIn order to determine the relative contributions of tectonics and eustasy to the sedimentary infill of the Vienna Basin a high-resolution stratigraphic record of a Middle to Late Miocene sedimentary sequence was established for a well (Spannberg-21) in the central part of the Vienna Basin. The well is located on an intrabasinal high, the Spannberg Ridge, a location that is relatively protected from local depocentre shifts. Downhole magnetostratigraphic measurements and biostratigraphical analysis form the basis for the chronostratigraphic framework. Temporal gaps in the sedimentary sequence were quantified from seismic data, well correlations and high-resolution electrical borehole images. Stratigraphic control with this integrated approach was good in the Sarmatian and Pannonian, but difficult in the Badenian. The resulting sedimentation rates show an increase towards the Upper Sarmatian from 0.43 m/kyr to > 1.2 m/kyr, followed by a decrease to relatively constant values around 0.3 m/kyr in the Pannonian. The sequence reflects the creation of accommodation space during the pull-apart phase of the basin and the subsequent slowing of the tectonic activity. The retreat of the Paratethys from the North Alpine Foreland Basin during the Early Sarmatian temporarily increased the influx of coarsergrained sediment, but eventually the basin acted mostly as a by-pass zone of sediment towards the Pannonian Basin. At a finer scale, the sequence exhibits correlations with global eustasy indicators, notably during the Sarmatian, the time of greatest basin subsidence and full connectivity with the Paratethyan system. In the Pannonian the eustatic signals become weaker due to an increased isolation of the Vienna Basin from Lake Pannon.


2018 ◽  
pp. 77-83
Author(s):  
F. Z. Khafizov

The article is devoted to the main patterns of tectonic development in the Middle Ob for the period from the tops of the middle Jurassic to the Eocene. It is shown that during this period of time in the tectonic development of the territory there were periods of quiet sedimentation and very active tectonic activity. In the history of the tectonic development of the Middle Ob four major stages are distinguished: two is quiet (the Jurassic and the Upper Cretaceous) and two are very active with large-scale multidirectional movements that led to a significant increase in the amplitudes of the structures (from the Cretaceous to the roof of the Cenomanian century).The article describes the methodology of the correlation analysis used in the study of the history of tectonic development in the territory.


2001 ◽  
Vol 34 (1) ◽  
pp. 451
Author(s):  
Α. ΨΙΛΟΒΙΚΟΣ ◽  
Ε. ΒΑΒΛΙΑΚΗΣ ◽  
Κ. ΒΟΥΒΑΛΙΔΗΣ ◽  
Ε. ΠΑΠΑΦΙΛΙΠΠΟΥ-ΠΕΝΝΟΥ

On the S W foothills of Mt. Menikion and the NE part of Serres basin, four zones of composite alluvial fans have been formed. The upper zone of thick hard fanglomerates lies at altitudes of 280 to 600 m on Mt. Menikion schists and marbles. The high zone of loose fanglomerates, with red-brown sand matrix, lies at altitudes of 200 to 350 m on the neogene deposits. The intermediate zone of mixed coarse and fine elastics lies at altitudes of 80 to 140 m on neogene deposits. The lower zone of gravel, sand and silt deposits lies at altitudes of 10 to 60 m on quaternary terrace deposits. Each zone is approximately 13 - 17 km long and 1-2 km wide, with E/SE - W/NW trend, almost parallel to the main fault lines of the area. The fan zones were deposited along the slopes of Mt. Menikion and Serres basin, owing to the fault tectonics of the area. Several E/SE - W/NW trending parallel to each other listric faults, were formed on the basement on Mt. Menikion and the neogene deposits of Serres basin. Their blocks slided and turned downstream along the faults, so that their surface inclined backwards. Close to the faults, parallel valleys were formed. They filled up with quaternary deposits, brought down by activated torrents. The torrents flowed transversely to the fault blocks. At the inner parts of the blocks they deposited clastic material in the form of alluvial fans. In the outer – higher part of the blocks they were incised in the rocks or the neogene sediments, to form narrow valleys, with terraces along their walls. The staircase development of the relief finally resulted in a staircase development of the fan zones. The two zones, upper and high, seem to be Pleistocene in age and the torrents have already incised in the fan material. The two zones, intermediate and lower, seem to be Holocene in age and are still active. Tectonic activity seems to have been the main cause of sediment entrapment in the Serres basin and the low sediment delivery rate of the river Strymon during the Quaternary.


2018 ◽  
Vol 55 ◽  
pp. 00001 ◽  
Author(s):  
Marek Kaczorowski ◽  
Damian Kasza ◽  
Ryszard Zdunek ◽  
Roman Wronowski

Tiltmeter observations with application of horizontal pendulums have been carried out for 40 years in the Geodynamic Laboratory in Książ. Long-term observations have not indicated any correlation of these data with meteorological or seasonal phenomena. Following an epoch of fast azimuth changes, a gradual compensation process took place, excluding the effect of gravitational creep of the rock massif. An assumption was made that the observed large changes of the equilibrium azimuths of the horizontal pendulums that result from tectonic tilt of the foundation blocks. Multiannual tiltmeter observations allowed to determine the temporal characteristics and amplitude tectonic effects. Intervals of strong tectonic activity in the rock massif of the Świebodzice Depression last from several days to over ten weeks and are separated by several tens of hours of low activity. Amplitude of the rock massif deformation reaches values from over ten to several tens of amplitudes of the tidal signal, i.e. up to several hundreds of micrometres. Water-tube tiltmeters (WT) launched in 2003 have confirmed the characteristics of tectonic effects and their incidental occurrence. Beside the tilt effects, WT have enabled to confirm vertical movement of the foundation blocks. Geological investigations in the Świebodzice Depression have indicated the presence of a numerous faults separating particular blocks in the rock massif. The presence of this fault system favours the dislocation of foundation blocks, which results in a quake-less relaxation of tectonic stresses and absence lack of seismic activity in the Świebodzice Depression. Foundation blocks separated by faults combined with the multiscale measurement system of WTs form a natural detector of regional tectonic activity, allowing to determine with micrometric resolution the representative function of tectonic activity in the rock massif of the Świebodzice Depression.


Sign in / Sign up

Export Citation Format

Share Document