scholarly journals Correction to: Sustainable bioethanol and value‑added chemicals production from paddy residues at pilot scale

Author(s):  
Tan M. Le ◽  
Uyen P. N. Tran ◽  
Yen H. P. Duong ◽  
Quan D. Nguyen ◽  
Viet T. Tran ◽  
...  
Keyword(s):  
2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Kamal Rai Aneja ◽  
Romika Dhiman ◽  
Neeraj Kumar Aggarwal ◽  
Ashish Aneja

Fruit juices are important commodities in the global market providing vast possibilities for new value added products to meet consumer demand for convenience, nutrition, and health. Fruit juices are spoiled primarily due to proliferation of acid tolerant and osmophilic microflora. There is also risk of food borne microbial infections which is associated with the consumption of fruit juices. In order to reduce the incidence of outbreaks, fruit juices are preserved by various techniques. Thermal pasteurization is used commercially by fruit juice industries for the preservation of fruit juices but results in losses of essential nutrients and changes in physicochemical and organoleptic properties. Nonthermal pasteurization methods such as high hydrostatic pressure, pulsed electric field, and ultrasound and irradiations have also been employed in fruit juices to overcome the negative effects of thermal pasteurization. Some of these techniques have already been commercialized. Some are still in research or pilot scale. Apart from these emerging techniques, preservatives from natural sources have also shown considerable promise for use in some food products. In this review article, spoilage, pathogenic microflora, and food borne outbreaks associated with fruit juices of last two decades are given in one section. In other sections various prevention methods to control the growth of spoilage and pathogenic microflora to increase the shelf life of fruit juices are discussed.


2020 ◽  
Vol 14 (1) ◽  
pp. 26
Author(s):  
Noah Kisuule ◽  
Nicholas Kiggundu ◽  
Noble Banadda

This paper reviews the current state of bio-processing of market waste to poultry feed in Uganda. A focus was put on crop wastes since previous studies have indicated that, they contribute the biggest percentage (about 90%) of the total organic waste generated in markets. These wastes majorly comprise of fruits and vegetables like mangoes, pineapples, jackfruit, watermelon, cabbage among others. They are usually in form of residual stalks, leaves, peels, and damaged/rotten crops. Crop wastes are rich in various bioactive and nutraceutical compounds, like carotenoids, polyphenols and dietary fiber. The wastes are a major worthwhile raw material and present feasible solutions to the problems of poultry feed scarcity and high costs associated with the conventional feed stuffs. This transformation can be achieved by developing appropriate technologies for valorization of wastes by nutrient enrichment. In concern to this, solid state fermentation (SSF) and rearing insects and earthworm using crop wastes are the promising novel technologies. High value added products/feeds can be produced through microbial fermentation of crop wastes. Insect protein can also be produced to replace the expensive silver fish and soybean protein sources. The review indicated that, the technologies have not been fully cherished within the country’s poultry feed industry. All the attempts and work done are still under research and pilot scale level. However, the on-going endeavors are continued widely to better conversion technologies in order to produce products that are safe for poultry feeding. Lastly, the limitations and strategies for processing poultry feed from market waste are reviewed.


Energies ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 379 ◽  
Author(s):  
Ekaterina Ovsyannikova ◽  
Andrea Kruse ◽  
Gero C. Becker

Microalgae (Spirulina) and primary sewage sludge are considerable feedstocks for future fuel-producing biorefinery. These feedstocks have either a high fuel production potential (algae) or a particularly high appearance as waste (sludge). Both feedstocks bring high loads of nutrients (P, N) that must be addressed in sound biorefinery concepts that primarily target specific hydrocarbons, such as liquid fuels. Hydrothermal liquefaction (HTL), which produces bio-crude oil that is ready for catalytic upgrading (e.g., for jet fuel), is a useful starting point for such an approach. As technology advances from small-scale batches to pilot-scale continuous operations, the aspect of nutrient recovery must be reconsidered. This research presents a full analysis of relevant nutrient flows between the product phases of HTL for the two aforementioned feedstocks on the basis of pilot-scale data. From a partial experimentally derived mass balance, initial strategies for recovering the most relevant nutrients (P, N) were developed and proofed in laboratory-scale. The experimental and theoretical data from the pilot and laboratory scales are combined to present the proof of concept and provide the first mass balances of an HTL-based biorefinery modular operation for producing fertilizer (struvite) as a value-added product.


Agronomy ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 198
Author(s):  
Mohd Huzairi Mohd Zainudin ◽  
Aisyah Zulkarnain ◽  
Ain Sahira Azmi ◽  
Shalini Muniandy ◽  
Kenji Sakai ◽  
...  

Composting is an important technology used to treat and convert organic waste into value-added products. Recently, several studies have been done to investigate the effects of microbial supplementation on the composting of agro-industrial waste. According to these studies, microbial inoculation is considered to be one of the suitable methods for enhancing the biotransformation of organic materials during the composting process. This review provides up-to-date research findings on microbial inoculation strategies and their role and functions in enhancing the composting process and the improvement of compost quality. Based on this review, the addition of microorganisms could enhance the composting process such as accelerating the organic matter degradation, mineralization and microbial enzymes activities, and the quality of the end-products such as high germination index. It is important to notice in this strategy that sludge’s microbial consortium is feasible to enhance the composting process in pilot-scale and industrial-scale productions. Besides, it also reduces the cost of compost production. The findings of this review show the various positive impact of microbial inoculation on agro-industrial waste composting which in turn might be useful as a reference for selecting a suitable inoculum based on the type of waste materials.


Catalysts ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 524 ◽  
Author(s):  
Zhongzhe Liu ◽  
Simcha Singer ◽  
Daniel Zitomer ◽  
Patrick McNamara

Improving onsite energy generation and recovering value-added products are common goals for sustainable used water reclamation. A new process called autocatalytic pyrolysis was developed at bench scale in our previous work by using biochar produced from the biosolids pyrolysis process itself as the catalyst to enhance energy recovery from wastewater biosolids. The large-scale investigation of this process was used to increase the technical readiness level. A sub-pilot-scale catalytic pyrolytic system was constructed for this scaled-up study. The effects of configuration changes in both pyrolytic and catalytic reactors were investigated as well as the effect of vapor-catalyst contact types (i.e., downstream, in-situ) on product yield and quality. The sub-pilot-scale test with downstream catalysis resulted in higher py-gas yields and lower bio-oil yields when compared to results from a previous batch, bench-scale process. In particular, the py-gas yields increased 2.5-fold and the energy contained in the py-gas approximately quadrupled compared to the control test without autocatalysis. Biochar addition to the feed biosolids before pyrolysis (in-situ catalysis) resulted in increased py-gas production, but the increase was limited. It was expected that using a higher input pyrolyzer with a better mixing condition would further improve the py-gas yield.


2021 ◽  
Vol 9 ◽  
Author(s):  
Kanika Arora ◽  
Parneet Kaur ◽  
Pradeep Kumar ◽  
Archana Singh ◽  
Sanjay Kumar Singh Patel ◽  
...  

Wastewater is not a liability, instead considered as a resource for microbial fermentation and value-added products. Most of the wastewater contains various nutrients like nitrates and phosphates apart from the organic constituents that favor microbial growth. Microalgae are unicellular aquatic organisms and are widely used for wastewater treatment. Various cultivation methods such as open, closed, and integrated have been reported for microalgal cultivation to treat wastewater and resource recovery simultaneously. Microalgal growth is affected by various factors such as sunlight, temperature, pH, and nutrients that affect the growth rate of microalgae. Microalgae can consume urea, phosphates, and metals such as magnesium, zinc, lead, cadmium, arsenic, etc. for their growth and reduces the biochemical oxygen demand (BOD). The microalgal biomass produced during the wastewater treatment can be further used to produce carbon-neutral products such as biofuel, feed, bio-fertilizer, bioplastic, and exopolysaccharides. Integration of wastewater treatment with microalgal bio-refinery not only solves the wastewater treatment problem but also generates revenue and supports a sustainable and circular bio-economy. The present review will highlight the current and advanced methods used to integrate microalgae for the complete reclamation of nutrients from industrial wastewater sources and their utilization for value-added compound production. Furthermore, pertaining challenges are briefly discussed along with the techno-economic analysis of current pilot-scale projects worldwide.


Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6754
Author(s):  
Maxwel Monção ◽  
Kateřina Hrůzová ◽  
Ulrika Rova ◽  
Leonidas Matsakas ◽  
Paul Christakopoulos

The use of residual biomass for bioconversions makes it possible to decrease the output of fossil-based chemicals and pursue a greener economy. While the use of lignocellulosic material as sustainable feedstock has been tried at pilot scale, industrial production is not yet economically feasible, requiring further technology and feedstock optimization. The aim of this study was to examine the feasibility of replacing woodchips with residual sawdust in biorefinery applications. Woodchips can be used in value-added processes such as paper pulp production, whereas sawdust is currently used mainly for combustion. The main advantages of sawdust are its large supply and a particle size sufficiently small for the pretreatment process. Whereas, the main challenge is the higher complexity of the lignocellulosic biomass, as it can contain small amounts of bark and cambium. Here, we studied the fractionation of birch sawdust by organosolv pretreatment at two different temperatures and for two different durations. We evaluated the efficiency of fractionation into the three main fractions: lignin, cellulose, and hemicellulose. The cellulose content in pretreated biomass was as high as 69.2%, which was nearly double the amount in untreated biomass. The obtained lignin was of high purity, with a maximum 4.5% of contaminating sugars. Subsequent evaluation of the susceptibility of pretreated solids to enzymatic saccharification revealed glucose yields ranging from 75% to 90% after 48 h but reaching 100.0% under the best conditions. In summary, birch sawdust can be successfully utilized as a feedstock for organosolv fractionation and replace woodchips to simplify and lower the costs of biorefinery processes.


Energies ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3947 ◽  
Author(s):  
Nazia Hossain ◽  
Alyaa Nabihah Razali ◽  
Teuku Meurah Indra Mahlia ◽  
Tamal Chowdhury ◽  
Hemal Chowdhury ◽  
...  

Banana stem is being considered as the second largest waste biomass in Malaysia. Therefore, the environmental challenge of managing this huge amount of biomass as well as converting the feedstock into value-added products has spurred the demand for diversified applications to be implemented as a realistic approach. In this study, banana stem waste was experimented for bioethanol generation via hydrolysis and fermentation methods with the presence of Saccharomyces cerevisiae (yeast) subsequently. Along with the experimental analysis, a realistic pilot scale application of electricity generation from the bioethanol has been designed by HOMER software to demonstrate techno-economic and environmental impact. During sulfuric acid and enzymatic hydrolysis, the highest glucose yield was 5.614 and 40.61 g/L, respectively. During fermentation, the maximum and minimum glucose yield was 62.23 g/L at 12 h and 0.69 g/L at 72 h, respectively. Subsequently, 99.8% pure bioethanol was recovered by a distillation process. Plant modeling simulated operating costs 65,980 US$/y, net production cost 869347 US$ and electricity cost 0.392 US$/kWh. The CO2 emission from bioethanol was 97,161 kg/y and SO2 emission was 513 kg/y which is much lower than diesel emission. The overall bioethanol production from banana stem and application of electricity generation presented the approach economically favorable and environmentally benign.


2021 ◽  
Vol 64 (4) ◽  
pp. 1153-1164
Author(s):  
Tyler J. Barzee ◽  
Abdolhossein Edalati ◽  
Joshua L. Rapport ◽  
Hamed M. El-Mashad ◽  
Ruihong Zhang

HighlightsN, P, Ca, and Mg were mainly localized to fine digestate solids (0.45 µm to 1 mm).50% to 60% of NH4+-N was found in digestate solids between 0.45 and 75 µm.K and Na were mainly transferred to the ultrafiltration permeate (<0.45 µm).Mixing of coarse and fine solids can optimize nutrient and salt ratios in products.Abstract. Food waste and dairy manure digestates from commercial digesters were characterized in the lab for particle and nutrient distributions before pilot-scale processing (vibratory screen, ultrafiltration, sun drying) to produce solid and liquid biofertilizer products. Experimental results showed that the elemental compositions of the two digestates were different but shared similarities. The coarse solids of both digestates had lower concentrations of nutrients than the liquid fractions, which contained most of the K and Na. The dairy manure digestate had a higher amount of fine solids between 0.4  and 75 µm than the food waste digestate, but the majority of TKN was contained in the fine solids of both digestates. An optimization analysis concluded that optimal combinations of digestate fractions included over 70% coarse solids to obtain desired nutrient and salt ratios. The solid and liquid fertilizer products derived from the pilot-scale processing were similar to those expected from the lab-scale investigation. Keywords: Biofertilizer formulation, Digestate, Nutrient distribution, Pilot-scale processing, Ultrafiltration, Value-added products.


2020 ◽  
Vol 12 (12) ◽  
pp. 5002
Author(s):  
Wei-Hao Lee ◽  
Ta-Wui Cheng ◽  
Kuan-Yu Lin ◽  
Kae-Long Lin ◽  
Chia-Cheng Wu ◽  
...  

The basic oxygen furnace slag is a major waste by-product generated from steel-producing plants. It possesses excellent characteristics and can be used as a natural aggregate. Chemically, the basic oxygen furnace slag encloses free CaO and free MgO, which is the main reason for the expansion crisis since these free oxides of alkaline earth metals react with water to form their hydroxide yields. The objective of the present research study is to stabilize the basic oxygen furnace slag by using innovative geopolymer technology, as their matrix contains a vast quantity of free silicon, which can react with free CaO and free MgO to form stable silicate compounds resulting in the prevention of the basic oxygen furnace slag expansion predicament. Lab-scale and ready-mixed plant pilot-scale experimental findings revealed that the compressive strength of fine basic oxygen furnace slag-based geopolymer mortar can achieve a compressive strength of 30–40 MPa after 28 days, and increased compressive strength, as well as the expansion, can be controlled less than 0.5% after ASTM C151 autoclave testing. Several pilot-scale cubic meters basic oxygen furnace slag-based geopolymer concrete blocks were developed in a ready-mixed plant. The compressive strength and autoclave expansion test results demonstrated that geopolymer technology does not merely stabilize the basic oxygen furnace slag production issue totally, but also turns the slags into value-added products.


Sign in / Sign up

Export Citation Format

Share Document