scholarly journals The future of self-selecting and stable fermentations

2020 ◽  
Vol 47 (11) ◽  
pp. 993-1004 ◽  
Author(s):  
Peter Rugbjerg ◽  
Lisbeth Olsson

AbstractUnfavorable cell heterogeneity is a frequent risk during bioprocess scale-up and characterized by rising frequencies of low-producing cells. Low-producing cells emerge by both non-genetic and genetic variation and will enrich due to their higher specific growth rate during the extended number of cell divisions of large-scale bioproduction. Here, we discuss recent strategies for synthetic stabilization of fermentation populations and argue for their application to make cell factory designs that better suit industrial needs. Genotype-directed strategies leverage DNA-sequencing data to inform strain design. Self-selecting phenotype-directed strategies couple high production with cell proliferation, either by redirected metabolic pathways or synthetic product biosensing to enrich for high-performing cell variants. Evaluating production stability early in new cell factory projects will guide heterogeneity-reducing design choices. As good initial metrics, we propose production half-life from standardized serial-passage stability screens and production load, quantified as production-associated percent-wise growth rate reduction. Incorporating more stable genetic designs will greatly increase scalability of future cell factories through sustaining a high-production phenotype and enabling stable long-term production.

Metabolites ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 45
Author(s):  
Qi Yang ◽  
Wenli Lin ◽  
Jiawei Xu ◽  
Nan Guo ◽  
Jiachen Zhao ◽  
...  

Bioreactor scale-up from the laboratory scale to the industrial scale has always been a pivotal step in bioprocess development. However, the transition of a bioeconomy from innovation to commercialization is often hampered by performance loss in titer, rate and yield. These are often ascribed to temporal variations of substrate and dissolved oxygen (for instance) in the environment, experienced by microorganisms at the industrial scale. Oscillations in dissolved oxygen (DO) concentration are not uncommon. Furthermore, these fluctuations can be exacerbated with poor mixing and mass transfer limitations, especially in fermentations with filamentous fungus as the microbial cell factory. In this work, the response of glucose-limited chemostat cultures of an industrial Penicillium chrysogenum strain to different dissolved oxygen levels was assessed under both DO shift-down (60% → 20%, 10% and 5%) and DO ramp-down (60% → 0% in 24 h) conditions. Collectively, the results revealed that the penicillin productivity decreased as the DO level dropped down below 20%, while the byproducts, e.g., 6-oxopiperidine-2-carboxylic acid (OPC) and 6-aminopenicillanic acid (6APA), accumulated. Following DO ramp-down, penicillin productivity under DO shift-up experiments returned to its maximum value in 60 h when the DO was reset to 60%. The result showed that a higher cytosolic redox status, indicated by NADH/NAD+, was observed in the presence of insufficient oxygen supply. Consistent with this, flux balance analysis indicated that the flux through the glyoxylate shunt was increased by a factor of 50 at a DO value of 5% compared to the reference control, favoring the maintenance of redox status. Interestingly, it was observed that, in comparison with the reference control, the penicillin productivity was reduced by 25% at a DO value of 5% under steady state conditions. Only a 14% reduction in penicillin productivity was observed as the DO level was ramped down to 0. Furthermore, intracellular levels of amino acids were less sensitive to DO levels at DO shift-down relative to DO ramp-down conditions; this difference could be caused by different timescales between turnover rates of amino acid pools (tens of seconds to minutes) and DO switches (hours to days at steady state and minutes to hours at ramp-down). In summary, this study showed that changes in oxygen availability can lead to rapid metabolite, flux and productivity responses, and dynamic DO perturbations could provide insight into understanding of metabolic responses in large-scale bioreactors.


2020 ◽  
Vol 19 (1) ◽  
Author(s):  
Chenyi Li ◽  
Xiaopeng Gao ◽  
Xiao Peng ◽  
Jinlin Li ◽  
Wenxin Bai ◽  
...  

Abstract Background In industrial fermentation, pH fluctuation resulted from microbial metabolism influences the strain performance and the final production. The common way to control pH is adding acid or alkali after probe detection, which is not a fine-tuned method and often leads to increased costs and complex downstream processing. Here, we constructed an intelligent pH-sensing and controlling genetic circuits called “Genetic pH Shooting (GPS)” to realize microbial self-regulation of pH. Results In order to achieve the self-regulation of pH, GPS circuits consisting of pH-sensing promoters and acid-/alkali-producing genes were designed and constructed. Designed pH-sensing promoters in the GPS can respond to high or low pHs and generate acidic or alkaline substances, achieving endogenously self-responsive pH adjustments. Base shooting circuit (BSC) and acid shooting circuit (ASC) were constructed and enabled better cell growth under alkaline or acidic conditions, respectively. Furthermore, the genetic circuits including GPS, BSC and ASC were applied to lycopene production with a higher yield without an artificial pH regulation compared with the control under pH values ranging from 5.0 to 9.0. In scale-up fermentations, the lycopene titer in the engineered strain harboring GPS was increased by 137.3% and ammonia usage decreased by 35.6%. Conclusions The pH self-regulation achieved through the GPS circuits is helpful to construct intelligent microbial cell factories and reduce the production costs, which would be much useful in industrial applications.


2021 ◽  
Author(s):  
Eline Postma ◽  
Else-Jasmijn Hassing ◽  
Venda Mangkusaputra ◽  
Jordi Geelhoed ◽  
Pilar de la Torre ◽  
...  

The construction of powerful cell factories requires intensive genetic engineering for the addition of new functionalities and the remodeling of native pathways and processes. The present study demonstrates the feasibility of extensive genome reprogramming using modular, specialized de novo-assembled neochromosomes in yeast. The in vivo assembly of linear and circular neochromosomes, carrying 20 native and 21 heterologous genes, enabled the first de novo production in a microbial cell factory of anthocyanins, plant compounds with a broad range pharmacological properties. Turned into exclusive expression platforms for heterologous and essential metabolic routes, the neochromosomes mimic native chromosomes regarding mitotic and genetic stability, copy number, harmlessness for the host and editability by CRISPR/Cas9. This study paves the way for future microbial cell factories with modular genomes in which core metabolic networks, localized on satellite, specialized neochromosomes can be swapped for alternative configurations and serve as landing pads for the addition of functionalities.


2019 ◽  
Vol 21 (4) ◽  
pp. 1238-1248
Author(s):  
Fu Chen ◽  
Le Yuan ◽  
Shaozhen Ding ◽  
Yu Tian ◽  
Qian-Nan Hu

Abstract A proliferation of chemical, reaction and enzyme databases, new computational methods and software tools for data-driven rational biosynthesis design have emerged in recent years. With the coming of the era of big data, particularly in the bio-medical field, data-driven rational biosynthesis design could potentially be useful to construct target-oriented chassis organisms. Engineering the complicated metabolic systems of chassis organisms to biosynthesize target molecules from inexpensive biomass is the main goal of cell factory design. The process of data-driven cell factory design could be divided into several parts: (1) target molecule selection; (2) metabolic reaction and pathway design; (3) prediction of novel enzymes based on protein domain and structure transformation of biosynthetic reactions; (4) construction of large-scale DNA for metabolic pathways; and (5) DNA assembly methods and visualization tools. The construction of a one-stop cell factory system could achieve automated design from the molecule level to the chassis level. In this article, we outline data-driven rational biosynthesis design steps and provide an overview of related tools in individual steps.


2021 ◽  
Author(s):  
Balázs Kakuk ◽  
Roland Wirth ◽  
Gergely Maróti ◽  
Szuhaj Márk ◽  
Gábor Rakhely ◽  
...  

Abstract Background. The detailed molecular machinery of the complex microbiological cell factory of biogas/biomethane production is not fully understood. One of the main puzzling process control elements is the formation, consumption and regulatory role of hydrogen (H2). Reduction of carbon dioxide (CO2) by H2 is rate limiting factor in methanogenesis, but the community intends to keep H2 concentration low in order to maintain the redox balance of the overall system. H2 metabolism in methanogens becomes increasingly important in the Power-to-Gas renewable energy conversion and storage technologies. Results. The early response of the mixed mesophilic microbial community to H2 gas injection was investigated with the goal of uncovering the first responses of the microbial community in the CH4 formation and CO2 mitigation Power-to-Gas process. The overall microbial composition changes, following a 10 min H2 injection by excessive bubbling of H2 through the reactor, was investigated via metagenome and metatranscriptome sequencing. The overall composition and taxonomic abundance of the biogas producing anaerobic community did not change appreciably two hours after the H2 treatment, indicating that this time period was too short to display differences in the proliferation of the members of the microbial community. There was, however, a substantial increase in the expression of genes related to hydrogenotrophic methanogenesis of certain groups of Archaea. H2 injection also altered the metabolism of a number of microbes belonging in the kingdom Bacteria. The importance of syntrophic cross-kingdom interactions in H2 metabolism and the effects on the related Power-to-Gas process are discussed. Conclusion s. External H2 regulates the functional activity of certain Bacteria and Archaea. Mixed communities are recommended for the large scale Power-to-Gas process rather than single hydrogenotrophic methanogen strains. Fast and reproducible response from the microbial community can be exploited in turn-off and turn-on of the Power-to-Gas microbial cell factories.


2020 ◽  
Author(s):  
Ashish Prabhu ◽  
Dominic J Thomas ◽  
Rodrigo Ledesma- Amaro ◽  
Gary A Leeke ◽  
Angel Medina Vaya ◽  
...  

Abstract Background: Xylitol is a commercially important chemical with multiple applications in the food and pharmaceutical industries. According to the US Department of Energy, xylitol is one of the top twelve platform chemicals that can be produced from biomass. The chemical method for xylitol synthesis is however expensive and energy intensive. In contrast, the biological route using microbial cell factories offers a potential cost-effective alternative process. The bioprocess occurs under ambient conditions and makes use of biocatalysts and biomass which can be sourced from renewable carbon originating from a variety of cheap waste feedstocks. Result: In this study, biotransformation of xylose to xylitol was investigated using Yarrowia lipolytica an oleaginous yeast which was firstly grown on a glycerol/glucose for screening of co-substrate, followed by media optimisation in shake flask, scale up in bioreactor and downstream processing of xylitol. A two-step medium optimization was employed using central composite design and artificial neural network coupled with genetic algorithm. The yeast amassed a concentration of 53.2 g/L xylitol using pure glycerol (PG) and xylose with a bioconversion yield of 0.97 g/g. Similar results were obtained when PG was substituted with crude glycerol (CG) from the biodiesel industry (titer: 50.5 g/L; yield: 0.92 g/g). Even when xylose from sugarcane bagasse hydrolysate was used as opposed to pure xylose, a xylitol yield of 0.54 g/g was achieved. Xylitol was successfully crystallized from PG/xylose and CG /xylose fermentation broths with a recovery of 39.5 and 35.3%, respectively. Conclusion: To the best of the author’s knowledge, this study demonstrates for the first time the potential of using Y. lipolytica as a microbial cell factory for xylitol synthesis from inexpensive feedstocks. The results obtained are competitive with other xylitol producing organisms.


2021 ◽  
Author(s):  
Guokun Wang ◽  
Douglas B. Kell ◽  
Irina Borodina

Abstract Fungal secondary metabolites (FSMs) represent a remarkable array of bioactive compounds, with potential applications as pharmaceuticals, nutraceuticals, and agrochemicals. However, these molecules are typically produced only in limited amounts by their native hosts. The native organisms may also be difficult to cultivate and genetically engineer, and some can produce undesirable toxic side-products. Alternatively, recombinant production of fungal bioactives can be engineered into industrial cell factories, such as aspergilli or yeasts, which are well amenable for large-scale manufacturing in submerged fermentations. In this review, we summarize the development of baker’s yeast Saccharomyces cerevisiae to produce compounds derived from filamentous fungi and mushrooms. These compounds mainly include polyketides, terpenoids, and amino acid derivatives. We also describe how native biosynthetic pathways can be combined or expanded to produce novel derivatives and new-to-nature compounds. We describe some new approaches for cell factory engineering, such as genome-scale engineering, biosensor-based high-throughput screening, and machine learning, and how these tools have been applied for S. cerevisiae strain improvement. Finally, we prospect the challenges and solutions in further development of yeast cell factories to more efficiently produce FSMs.


2020 ◽  
Author(s):  
Aleksandr Illarionov ◽  
Petri-Jaan Lahtvee ◽  
Rahul Kumar

AbstractBiotechnology requires efficient microbial cell factories. The budding yeast Saccharomyces cerevisiae is an important cell factory but for a sustainable use of natural resources more diverse cellular attributes are essential. Here, we benchmarked non-conventional yeasts Kluyveromyces marxianus (KM) and Rhodotorula toruloides (RT) against the extensively characterized strains of S. cerevisiae, CEN.PK and W303. We developed a computational method for the characterization of cell/vacuole volumes and observed an inverse relationship between the maximal growth rate and the median cell volume that was responsive to monovalent cations. We found that the supplementation of certain K+ concentrations to CEN.PK cultures containing 1.0 M Na+ increased the specific growth rate by four-fold with a parabolic shift in the median cell/vacuole volumes. The impairment of ethanol and acetate utilization in CEN.PK, acetate in W303, at the higher K+/Na+ concentrations implied an interference in the metabolic pathways required for their consumption. In RT cultures, the supplementation of K+/Na+ induced a trade-off in glucose utilization but alleviated cellular aggregates formation where specified cationic concentrations increased the beta-carotene yield by 60% compared with the reference. Our comparative analysis of cell/vacuole volumes using exponential phase cultures showed that the median volumes decreased the most for KM and the least for RT in response to studied cations. Noteworthy for the implication in aging research using yeasts, the vacuole to cell volume ratio increased with the increase in cell volume for W303 and KM, but not for CEN.PK and RT.ImportanceFor designing efficient bioprocesses characterization of microbial cell factories in the relevant culture environment is important. The control of cell volume in response to salt stress is crucial for the productivity of microbial cell factories. We developed an open source computational method for the analysis of optical microscopy images that allowed us to quantify changes in cell/vacuole volumes in response to common salts in yeasts. Our study provides a framework for appreciating the role of cellular/organellar volumes in response to changing physiological environment. Our analysis showed that K+/Na+ interactions could be used for improving the cellular fitness of CEN.PK and increasing the productivity of beta-carotene in R. toruloides, which is a commercially important antioxidant and a valuable additive in foods.


Author(s):  
S. Pragati ◽  
S. Kuldeep ◽  
S. Ashok ◽  
M. Satheesh

One of the situations in the treatment of disease is the delivery of efficacious medication of appropriate concentration to the site of action in a controlled and continual manner. Nanoparticle represents an important particulate carrier system, developed accordingly. Nanoparticles are solid colloidal particles ranging in size from 1 to 1000 nm and composed of macromolecular material. Nanoparticles could be polymeric or lipidic (SLNs). Industry estimates suggest that approximately 40% of lipophilic drug candidates fail due to solubility and formulation stability issues, prompting significant research activity in advanced lipophile delivery technologies. Solid lipid nanoparticle technology represents a promising new approach to lipophile drug delivery. Solid lipid nanoparticles (SLNs) are important advancement in this area. The bioacceptable and biodegradable nature of SLNs makes them less toxic as compared to polymeric nanoparticles. Supplemented with small size which prolongs the circulation time in blood, feasible scale up for large scale production and absence of burst effect makes them interesting candidates for study. In this present review this new approach is discussed in terms of their preparation, advantages, characterization and special features.


Sign in / Sign up

Export Citation Format

Share Document