scholarly journals Modelling of Non-Newtonian Starved Thermal-elastohydrodynamic Lubrication of Heterogeneous Materials in Impact Motion

Author(s):  
Xueyu Bai ◽  
Qingbing Dong ◽  
Han Zheng ◽  
Kun Zhou

AbstractThis study presents a numerical model for the thermal-elastohydrodynamic lubrication of heterogeneous materials in impact motion, in which a rigid ball bounces on a starved non-Newtonian oil-covered plane surface of an elastic semi-infinite heterogeneous solid with inhomogeneous inclusions. The impact–rebound process and the microscopic response of the subsurface inhomogeneous inclusions are investigated. The inclusions are homogenized according to Eshelby’s equivalent inclusion method. The Elrod algorithm is adopted to determine the lubrication starvation based on the solutions of pressure and film thickness, while the lubricant velocity and shear rate of the non-Newtonian lubricant are derived by using the separation flow method. The dynamic response of the cases subjected to constant impact mass, momentum, and energy is discussed to reveal the influence of the initial drop height on the impact–rebound process. The results imply that the inclusion disturbs the subsurface stress field and affects the dynamic response of the contact system when the surface pressure is high. The impact energy is the decisive factor for the stress peak, maximum hydrodynamic force, and restitution coefficient, while the dynamic response during the early approaching process is controlled by the drop height.

Author(s):  
Duohuan Wu ◽  
Jing Wang ◽  
Peiran Yang ◽  
Ton Lubrecht

In this study, the effect of oil starvation on isothermal elastohydrodynamic lubrication of an impact motion is explored with the aid of numerical techniques. During the impact process, on comparison with the fully lubricated results, the pressure and film thickness are much lower and the entrapped film shape does not happen. The rebound is delayed by the oil starvation assumption. During the rebound process, a periphery entrapment is seen in the starved film thickness distribution. Under the starved condition, the maximum pressure gradient is higher. The central film thickness and minimum film thickness exhibit different variations compared with the results by fully flooded assumption.


2021 ◽  
Vol 9 (1) ◽  
pp. 55
Author(s):  
Darshana T. Dassanayake ◽  
Alessandro Antonini ◽  
Athanasios Pappas ◽  
Alison Raby ◽  
James Mark William Brownjohn ◽  
...  

The survivability analysis of offshore rock lighthouses requires several assumptions of the pressure distribution due to the breaking wave loading (Raby et al. (2019), Antonini et al. (2019). Due to the peculiar bathymetries and topographies of rock pinnacles, there is no dedicated formula to properly quantify the loads induced by the breaking waves on offshore rock lighthouses. Wienke’s formula (Wienke and Oumeraci (2005) was used in this study to estimate the loads, even though it was not derived for breaking waves on offshore rock lighthouses, but rather for the breaking wave loading on offshore monopiles. However, a thorough sensitivity analysis of the effects of the assumed pressure distribution has never been performed. In this paper, by means of the Wolf Rock lighthouse distinct element model, we quantified the influence of the pressure distributions on the dynamic response of the lighthouse structure. Different pressure distributions were tested, while keeping the initial wave impact area and pressure integrated force unchanged, in order to quantify the effect of different pressure distribution patterns. The pressure distributions considered in this paper showed subtle differences in the overall dynamic structure responses; however, pressure distribution #3, based on published experimental data such as Tanimoto et al. (1986) and Zhou et al. (1991) gave the largest displacements. This scenario has a triangular pressure distribution with a peak at the centroid of the impact area, which then linearly decreases to zero at the top and bottom boundaries of the impact area. The azimuthal horizontal distribution was adopted from Wienke and Oumeraci’s work (2005). The main findings of this study will be of interest not only for the assessment of rock lighthouses but also for all the cylindrical structures built on rock pinnacles or rocky coastlines (with steep foreshore slopes) and exposed to harsh breaking wave loading.


Author(s):  
Balakrishna Adhikari ◽  
BN Singh

In this paper, a finite element study is conducted using the Green Lagrange strain field based on vonKarman assumptions for the geometric nonlinear static and dynamic response of the laminated functionally graded CNT reinforced (FG-CNTRC) composite plate. The governing equations for determining the nonlinear static and dynamic behavior of the FG-CNTRC plate are derived using the Lagrange equation of motion based on Reddy's higher order theory. Using the direct iteration technique, the nonlinear eigenvalues for analyzing the free vibration response are obtained and the nonlinear dynamic responses of the FG-CNTRC plate are encapsulated based on the nonlinear Newmark integration scheme. The impact of the amplitude of vibration on mode switching phenomena and the consequence of the duration of the pulse on the free vibration regime of the plate are outlined. Also, the effect of time dependent loads is studied on the normal stresses of the plate. Furthermore, the impact on the nonlinear static and dynamic response of the laminated FG-CNTRC plate of various parameters such as span-thickness ratio (b/h ratio), aspect ratio (a/b ratio), different edge constraints, CNT fiber gradation, etc. are also studied.


Author(s):  
Shijing Wu ◽  
Haibo Zhang ◽  
Xiaosun Wang ◽  
Zeming Peng ◽  
Kangkang Yang ◽  
...  

Backlash is a key internal excitation on the dynamic response of planetary gear transmission. After the gear transmission running for a long time under load torque, due to tooth wear accumulation, the backlash between the tooth surface of two mating gears increases, which results in a larger and irregular backlash. However, the increasing backlash generated by tooth accumulated wear is generally neglected in lots of dynamics analysis for epicyclic gear trains. In order to investigate the impact of backlash generated by tooth accumulated wear on dynamic behavior of compound planetary gear set, in this work, first a static tooth surface wear prediction model is incorporated with a dynamic iteration methodology to get the increasing backlash generated by tooth accumulated wear for one pair of mating teeth under the condition that contact ratio equals to one. Then in order to introduce the tooth accumulated wear into dynamic model of compound planetary gear set, the backlash excitation generated by tooth accumulated wear for each meshing pair in compound planetary gear set is given under the condition that contact ratio equals to one and does not equal to one. Last, in order to investigate the impact of the increasing backlash generated by tooth accumulated wear on dynamic response of compound planetary gear set, a nonlinear lumped-parameter dynamic model of compound planetary gear set is employed to describe the dynamic relationships of gear transmission under the internal excitations generated by worn profile, meshing stiffness, transmission error, and backlash. The results indicate that the introduction of the increasing backlash generated by tooth accumulated wear makes a significant influence on the bifurcation and chaotic characteristics, dynamic response in time domain, and load sharing behavior of compound planetary gear set.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Sinchai Chinvorarat ◽  
Pumyos Vallikul

Purpose The purpose of this paper is to present a novel retractable main landing gear for a light amphibious airplane, while the design, synthesis and analysis are given in details for constructing the main landing gear. Design/methodology/approach The constraint three-position synthesis has given the correct path of all linkages that suitably fit the landing gear into the compartment. The additional lock-link is introduced into the design to ensure the securement of the mechanism while landing. Having the telescopic gas-oil shock strut as a core element to absorb the impact load, it enhances the ability and efficiency to withstand higher impact than others type of light amphibious airplane. Findings By kinematics bifurcation analysis, the optimized value of the unlock spring stiffness at 90 N/m can be found to tremendously reduce the extended-retracted linear actuator force from 500 N to 150 N at the beginning of the retraction sequence. This could limit the size and weight of the landing gear actuator of the light amphibious airplane. Practical implications The drop test of the landing gear to comply with the ASTM f-2245 (Standard Specification for Design and Performance of a Light Sport Airplane) reveals that the novel landing gear can withstand the impact load at the drop height determined by the standard. The maximum impact loading 4.8 G occurs at the drop height of 300 mm, and there is no sign of any detrimental or failure of the landing gear or the structure of the light amphibious airplane. The impact settling time response reaches the 2% of steady-state value in approximately 1.2 s that ensure the safety and stability of the amphibious airplane if it subjects to an accidentally hard landing. Originality/value This paper presents unique applications of a retractable main landing gear of a light amphibious airplane. The proposed landing gear functions properly and complies with the drop test standard, ensuring the safety and reliability of the airplane and exploiting the airworthiness certification process.


Author(s):  
František Peterka

Abstract The double impact oscillator represents two symmetrically arranged single impact oscillators. It is the model of a forming machine, which does not spread the impact impulses into its neighbourhood. The anti-phase impact motion of this system has the identical dynamics as the single system. The in-phase motion and the influence of asymmetries of the system parameters are studied using numerical simulations. Theoretical and simulation results are verified experimentally and the real value of the restitution coefficient is determined by this method.


2017 ◽  
Vol 865 ◽  
pp. 612-618 ◽  
Author(s):  
M. Malawat ◽  
Jos Istiyanto ◽  
D.A. Sumarsono

Crush initiators are the weakest points to reduce initial peak load force with significant energy absorption ability. The objective of this paper is to study the effects of square tube thickness and crush initiators position for impact energy absorber (IEA) performance on thin-walled square tubes. Two square tubes having thickness about 0.6 mm (specimen code A) and 1 mm (specimen Code C) were tested under dynamic load. The crushing initiator is designed around the shape of the tube wall and has eight holes with a fixed diameter of 6.5 mm. In the experiment, the crushing initiator was determined at 5 different locations on the specimen wall. These locations are 10 mm, 20 mm. 30 mm, 40 mm, and 50 mm measured from the initial collision position of the specimen tested. The impact load mass was about 80 kg and had a drop height of about 1.5 m. Using the simulation program of the LabVIEW Professional Development System 2011 and National Instrument (NI) 9234 software equipped with data acquisition hardware NI cDAQ-9174 the signal from the load cell was sent to a computer. By controlling the thickness of the thin-walled square tube, the peak loading force can be decreased by approximately 56.75% and energy absorption ability of IEA can be increased approximately to 11.83%. By using different thin-walled square tube can produce different best crush initiators position with the lowest peak load force.


Author(s):  
J. Armand ◽  
L. Pesaresi ◽  
L. Salles ◽  
C. W. Schwingshackl

Accurate prediction of the vibration response of aircraft engine assemblies is of great importance when estimating both the performance and the lifetime of its individual components. In the case of underplatform dampers, for example, the motion at the frictional interfaces can lead to a highly nonlinear dynamic response and cause fretting wear at the contact. The latter will change the contact conditions of the interface and consequently impact the nonlinear dynamic response of the entire assembly. Accurate prediction of the nonlinear dynamic response over the lifetime of the assembly must include the impact of fretting wear. A multi-scale approach that incorporates wear into the nonlinear dynamic analysis is proposed, and its viability is demonstrated for an underplatform damper system. The nonlinear dynamic response is calculated with a multiharmonic balance approach, and a newly developed semi-analytical contact solver is used to obtain the contact conditions at the blade-damper interface with high accuracy and low computational cost. The calculated contact conditions are used in combination with the energy wear approach to compute the fretting wear at the contact interface. The nonlinear dynamic model of the blade-damper system is then updated with the worn profile and its dynamic response is recomputed. A significant impact of fretting wear on the nonlinear dynamic behaviour of the blade-damper system was observed, highlighting the sensitivity of the nonlinear dynamic response to changes at the contact interface. The computational speed and robustness of the adopted multi-scale approach are demonstrated.


Author(s):  
Fu-Ling Yang ◽  
Melany L Hunt

Experimental evidence shows that the presence of an ambient liquid can greatly modify the collision process between two solid surfaces. Interactions between the solid surfaces and the surrounding liquid result in energy dissipation at the particle level, which leads to solid–liquid mixture rheology deviating from dry granular flow behaviour. The present work investigates how the surrounding liquid modifies the impact and rebound of solid spheres. Existing collision models use elastohydrodynamic lubrication (EHL) theory to address the surface deformation under the developing lubrication pressure, thereby coupling the motion of the liquid and solid. With EHL theory, idealized smooth particles are made to rebound from a lubrication film. Modified EHL models, however, allow particles to rebound from mutual contacts of surface asperities, assuming negligible liquid effects. In this work, a new contact mechanism, ‘mixed contact’, is formulated, which considers the interplay between the asperities and the interstitial liquid as part of a hybrid rebound scheme. A recovery factor is further proposed to characterize the additional energy loss due to asperity–liquid interactions. The resulting collision model is evaluated through comparisons with experimental data, exhibiting a better performance than the existing models. In addition to the three non-dimensional numbers that result from the EHL analysis—the wet coefficient of restitution, the particle Stokes number and the elasticity parameter—a fourth parameter is introduced to correlate particle impact momentum to the EHL deformation impulse. This generalized collision model covers a wide range of impact conditions and could be employed in numerical codes to simulate the bulk motion of solid particles with non-negligible liquid effects.


Author(s):  
Zhen Li ◽  
Qiang Gao ◽  
Liangmo Wang ◽  
Jun Tang

To investigate their in-plane dynamic response, a rigid plate with mass was given an initial velocity to impact (square) honeycombs in the X1 and X2 directions, respectively. Firstly, the impact model was built and validated. Then, impact resistance capacity research was conducted. Results showed that each honeycomb performed similarly in X1 and X2 directions, and the reentrant honeycomb usually used smaller displacement and time to absorb the same amount of kinetic energy. Thus, it is better for application if these factors were the main concerns. After that, the nominal stress at the proximal and distal ends were discussed under various impact velocities. It is shown that, under impact loading, the reentrant honeycomb generally showed higher initial peak stress as well as lower plateau stress at both proximal and distal ends. In addition, combining these with the deformation process of honeycombs, it was concluded that the formation of the plateau area of the nominal stress curve is related to the crushing displacement of the impact plate as well as the collapse of cells.


Sign in / Sign up

Export Citation Format

Share Document