scholarly journals Review on Manufacture of Military Composite Helmet

Author(s):  
Yazhen Liang ◽  
Xiaogang Chen ◽  
Constantinos Soutis

AbstractDespite of the fact that more and more accessory devices are integrated to functionalize a ballistic helmet system, its core ballistic protective function needs to be improved with weight reduction was and still is the main course in engineering design. The two major generic classes of synthetic fibres for ballistic composites are Ultra High Molecular Weight Polyethylene (UHMWPE) fibre (0.97 g/cm3) and aramid fibre (1.44 g/cm3). In the area of military helmets, these fibres are constructed into different topologies, draping/forming into double-curvature geometric shape in multiple plies, serving as reinforcement for composite shell. The preforming ways influence the subsequent impregnation / solidification and curing step in manufacture, in terms of the fibre orientation and fibre volume fraction. The inherent structural heterogeneity thus leads to scatter in permeability and composite thickness, and have further impact in generating process-induced defects. During the processing, the fibre continuity without wrinkles, together with voids-free are determinative factors to a quality final part. The aim of this paper is to review the manufacturing technologies characterised by thermo-mechanical forming and Liquid Composite Moulding (LCM), relating their processing parameters respectively to the properties of reinforcements in one dimension (1D), two dimensions (2D) and three dimensions (3D), along with that of the matrix in dry or wet phase, interdependency of them are sought.

2011 ◽  
Vol 471-472 ◽  
pp. 20-25 ◽  
Author(s):  
Mansur Ahmed ◽  
Md. Saiful Islam ◽  
Qumrul Ahsan ◽  
Md Mainul Islam

Natural fibres offer a number of benefits as reinforcement for synthetic polymers since they have high specific strength and stiffness, high impact strength, biodegradability etc. The aim of this study is to fabricate and determine the performance of unidirectional silk fibre reinforced polymer composites. In the present initial study, alkali treated silk fibres were incorporated as reinforcing agent, while a mixture of 20% maleic anhydride grafted polypropylene (MAPP) and commercial grade polypropylene (PP) was used as matrix element. The unidirectional composites were fabricated by using hot compression machine under specific pressure, temperature and varying fibre loading. Tensile, flexural, impact and hardness tests were carried out by varying silk fibre volume fraction. Composites containing 45% fibre volume fraction had higher tensile and flexural strength, Young’s modulus and flexural modulus compared to other fabricated composites including those with untreated silk fibres. SEM micrographs were taken to examine composite fracture surface and interfacial adhesion between silk fibre and the matrix. These micrographs suggested less fibre pull out and better interfacial bonding for 40% fibre reinforced composites.


Author(s):  
M J Mahmoodi ◽  
M M Aghdam ◽  
M Shakeri

A three-dimensional micromechanics-based analytical model is presented to investigate the effects of initiation and propagation of interface damage on the elastoplastic behaviour of unidirectional SiC—Ti metal matrix composites (MMCs) subjected to off-axis loading. Temperature-dependent properties are considered for the matrix. Manufacturing process thermal residual stress (RS) is also included in the model. The selected representative volume element consists of r× c unit cells in which a quarter of the fibre is surrounded by matrix sub-cells. The constant compliance interface model is used to model interfacial debonding and the successive approximation method together with von Mises yield criterion is used to obtain elastoplastic behaviour. Dominance mode of damage including fibre fracture, interfacial debonding, and matrix yielding and ultimate tensile strength of the SiC—Ti MMC are predicted for various loading directions. The effects of thermal RS and fibre volume fraction on the stress—strain response of the SiC—Ti MMC are studied. Results revealed that for more realistic predictions, both interface damage and thermal RS effects should be considered in the analysis. The contribution of interfacial debonding and thermal RS in the overall behaviour of the material is also investigated. Comparison between results of the presented model shows very good agreement with the finite-element micromechanical analysis and experiment for various off-axis angles.


2013 ◽  
Vol 701 ◽  
pp. 23-27
Author(s):  
S.A. Syed Azuan ◽  
M.M. Saufi ◽  
M.G. Azniah ◽  
J.M. Juraidi

Sugar palm frond fibre has a potential to be as reinforcement in natural fibres reinforced polyester composites. This paper investigates the tensile properties of sugar palm frond fibre reinforced polyester composites. The sugar palm frond fibres were mixed with polyester composites at the 5 % fibre volume fraction with three different vacuum pressure of 5, 10 and 15 psi. The composites panels were fabricated using a vacuum bagging techniques. The tensile test was carried out in accordance to ASTM D638 respectively. The results showed that the vacuum pressure at 15 psi gave maximum value for tensile strength and tensile modulus. The results indicate that by increasing the vacuum pressure, it created a better bonding between fibre and the matrix. Minitab software was used to perform the one-way ANOVA analysis to measure the significant. From the analysis, there is a significant effect of vacuum pressure on the tensile properties.


2007 ◽  
Vol 15 (7) ◽  
pp. 507-519 ◽  
Author(s):  
A.L. Jeswani ◽  
J.A. Roux

This study seeks to improve the wet-out and thus the quality of the pultruded part in the tapered injection pultrusion process. Complete wet-out of the dry fibre reinforcement by the liquid resin depends strongly on the processing parameters. Process parameters modelled were: fibre pull speed, fibre volume fraction and resin viscosity. In this work a 3-D finite volume technique was developed to simulate the flow of polyester resin through the glass rovings. The results show the impact of the tapering of the injection chamber walls on the minimum injection pressure necessary to achieve complete fibre matrix wet-out and the resin pressure at the injection chamber exit. Important chamber design information is presented.


1986 ◽  
Vol 78 ◽  
Author(s):  
Kevin Kendall ◽  
N. Mcn. Alford ◽  
J. D. Birchall

ABSTRACTWhen considering the strength of a fibre reinforced ceramic composite, it is often assumed that the fibres retain their full strength of several GPa after cracking of the weaker matrix. The strength of the composite after matrix cracking is then calculated by the rule of mixtures as the product of fibre volume fraction and fibre strength. This paper demonstrates that such a calculation is not consistent with the principles of fracture mechanics for an isolated fibre embedded in an elastic matrix of the same elastic modulus, because the strength of the fibre is much reduced by the stress concentration arising from the matrix crack. Experimental measurements of the strength of a glass fibre embedded in a brittle matrix support the theory. The case of a fibre in a matrix of different elastic modulus is also considered, together with the proDlem of cracking along the fibre-matrix interface.


2013 ◽  
Vol 2 (3) ◽  
pp. 17-21 ◽  
Author(s):  
Michael ◽  
Elmer Surya ◽  
Halimatuddahliana

This study was aimed to investigate the effect of empty fruit bunch palm oil and cellulose content as filler in water absorption and fibre volume fraction of the unsaturated polyester composites. The composites were made by hand-lay up method by mixing unsaturated polyester with the composition of each fillers (empty fruit bunch palm oil and cellulose) of 5,10,15,20 wt%. The parameter which was carried on the prepared samples was water absorption for each sample every 24 hours until the composites have constant absorption. It was found that the addition of fillers to the matrix caused the water absorption of composites increased at each of composition of fillers (empty fruit bunch palm oil and cellulose) and the fibre volume fraction increased as the filler content increase.


Author(s):  
Ajaz A Deliwala ◽  
Chandra S Yerramalli

A multiscale model is developed to understand the material removal process in a unidirectional carbon fibre epoxy composite impacted by a single-erodent particle. The embedded cell approach is used to model the carbon fibre and epoxy at a microscale. The micromodel is embedded centrally in the macroscale lamina of the composite plate. The carbon fibre is considered to be elastic with orthotropic strain limits as the failure criteria. The epoxy matrix is modelled as an elastic--plastic material with multilinear isotropic hardening. The maximum equivalent plastic strain limit is used as the matrix material failure limit. Using this embedded micromechanics model, the role of matrix and the fibre in developing the composite material erosion behaviour has been clearly elucidated. The results from the simulation indicate the change in the matrix erosion behaviour as a function of the fibre volume fraction. For the current thermoset matrix, material erosion response changes from brittle behaviour to ductile behaviour with an increase in fibre volume fraction. The current study has been able to highlight the individual role of matrix and the fibre in developing the semi-ductile erosion response peculiar to a fibre-reinforced composite material.


2021 ◽  
pp. 096739112110239
Author(s):  
Sheedev Antony ◽  
Abel Cherouat ◽  
Guillaume Montay

Nowadays natural fibre composites have gained great significance as reinforcements in polymer matrix composites. Composite material based on a polymer matrix reinforced with natural fibres is extensively used in industry due to their biodegradability, recyclability, low density and high specific properties. A study has been carried out here to investigate the fibre volume fraction effect of hemp fibre woven fabrics/PolyPropylene (PP) composite laminates on the tensile properties and impact hammer impact test. Initially, composite sheets were fabricated by the thermal-compression process with desired number of fabric layers to obtain composite laminates with different fibre volume fraction. Uniaxial, shear and biaxial tensile tests were performed and mechanical properties were calculated. Impact hammer test was also carried out to estimate the frequency and damping parameters of stratified composite plates. Scanning Electron Microscope (SEM) analysis was performed to observe the matrix and fibre constituent defects. Hemp fabrics/PP composite laminates exhibits viscoelastic behaviour and as the fibre volume fraction increases, the viscoelastic behaviour decreases to elastic behaviour. Due to this, the tensile strength increases as the fibre content increases. On the other hand, the natural frequency increases and damping ratio decrease as the fibre volume fraction increases.


2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
A. Shalwan ◽  
M. Alajmi ◽  
A. Alajmi

Using natural fibres in civil engineering is the aim of many industrial and academics sectors to overcome the impact of synthetic fibres on environments. One of the potential applications of natural fibres composites is to be implemented in insulation components. Thermal behaviour of polymer composites based on natural fibres is recent ongoing research. In this article, thermal characteristics of sisal fibre reinforced epoxy composites are evaluated for treated and untreated fibres considering different volume fractions of 0–30%. The results revealed that the increase in the fibre volume fraction increased the insulation performance of the composites for both treated and untreated fibres. More than 200% insulation rate was achieved at the volume fraction of 20% of treated sisal fibres. Untreated fibres showed about 400% insulation rate; however, it is not recommended to use untreated fibres from mechanical point of view. The results indicated that there is potential of using the developed composites for insulation purposes.


2013 ◽  
Vol 746 ◽  
pp. 385-389
Author(s):  
Li Yan Liu ◽  
Yu Ping Chen ◽  
Jing Zhu

This paper is aiming to develop the cattail fibre as reinforcing material due to its environmental benefits and excellent physical and insulated characteristics. The current work is concerned with the development of the technical fibres from the original plant and research on their reinforcing properties in the innovative composites. Polypropylene (PP) fibre was used as matrix in this research which was fabricated into fibre mats with cattail fibre together with different fibre volume fractions. Cattail fibre reinforced PP laminates were manufactured and compared with jute/PP composites. The tensile and bending properties of laminates were tested. The SEM micrographs of fracture surface of the laminates were analyzed as well. The results reveal that the tensile and bending properties of cattail/PP laminates are closed to those of jute/PP composites. The mechanical properties of cattail/jute/PP laminates with fibre volume fraction of 20/35/45 is betther than those of laminate reinforced with cattail fibers.


Sign in / Sign up

Export Citation Format

Share Document