Effects of thermal aging on growth behavior of interfacial intermetallic compound of dip soldered Sn/Cu joints

2018 ◽  
Vol 29 (10) ◽  
pp. 8863-8875 ◽  
Author(s):  
Nifa Bao ◽  
Xiaowu Hu ◽  
Yulong Li ◽  
Xiongxin Jiang
2016 ◽  
Vol 857 ◽  
pp. 8-12
Author(s):  
Fatin Afeeqa Mohd Sobri ◽  
Mohd Arif Anuar Mohd Salleh ◽  
Che Mohd Ruzaidi Ghazali ◽  
Pavithiran Narayanan

The wettability of Sn-Cu-Ni with Germanium (Ge) additions of 0 ppm, 10 ppm, 60 ppm, 100 ppm and 200 ppm were investigated with Gen3 machine. The range of the wettability shows the lowest and the highest reading of wetting time and maximum force. Three different conditions were investigated which consist of as soldered, reflowed and aged. Further interfacial IMC observation was done for 0 ppm and 60 ppm of Ge to investigate the growth of interfacial IMC after thermal aging. From the measurement, the thickness of IMC for 0 ppm Ge is 2.075μm, 3.936μm and 4.502μm with aging time at 24,120 and 240 hours respectively. While for 60 ppm Ge, the IMC thickness are much lower with 1.8μm, 3.11μm and 4.154μm at the same aging time with 0ppm Ge. The results indicate that 60 ppm of Ge in Sn-Cu-Ni has the lowest wetting time, higher maximum force and slow IMC growth.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Jianing Wang ◽  
Jieshi Chen ◽  
Zhiyuan Zhang ◽  
Peilei Zhang ◽  
Zhishui Yu ◽  
...  

Purpose The purpose of this article is the effect of doping minor Ni on the microstructure evolution of a Sn-xNi (x = 0, 0.05 and 0.1 wt.%)/Ni (Poly-crystal/Single-crystal abbreviated as PC Ni/SC Ni) solder joint during reflow and aging treatment. Results showed that the intermetallic compounds (IMCs) of the interfacial layer of Sn-xNi/PC Ni joints were Ni3Sn4 phase, while the IMCs of Sn-xNi/SC Ni joints were NiSn4 phase. After the reflow process and thermal aging of different joints, the growth behavior of interfacial layer was different due to the different mechanism of element diffusion of the two substrates. The PC Ni substrate mainly provided Ni atoms through grain boundary diffusion. The Ni3Sn4 phase of the Sn0.05Ni/PC Ni joint was finer, and the diffusion flux of Sn and Ni elements increased, so the Ni3Sn4 layer of this joint was the thickest. The SC Ni substrate mainly provided Ni atoms through the lattice diffusion. The Sn0.1Ni/SC Ni joint increases the number of Ni atoms at the interface due to the doping of 0.1Ni (wt.%) elements, so the joint had the thickest NiSn4 layer. Design/methodology/approach The effects of doping minor Ni on the microstructure evolution of an Sn-xNi (x = 0, 0.05 and 0.1 Wt.%)/Ni (Poly-crystal/Single-crystal abbreviated as PC Ni/SC Ni) solder joint during reflow and aging treatment was investigated in this study. Findings Results showed that the intermetallic compounds (IMCs) of the interfacial layer of Sn-xNi/PC Ni joints were Ni3Sn4 phase, while the IMCs of Sn-xNi/SC Ni joints were NiSn4 phase. After the reflow process and thermal aging of different joints, the growth behavior of the interfacial layer was different due to the different mechanisms of element diffusion of the two substrates. Originality/value In this study, the effect of doping Ni on the growth and formation mechanism of IMCs of the Sn-xNi/Ni (single-crystal) solder joints (x = 0, 0.05 and 0.1 Wt.%) was investigated.


2019 ◽  
Vol 33 (01) ◽  
pp. 1850425 ◽  
Author(s):  
Hongming Cai ◽  
Yang Liu ◽  
Shengli Li ◽  
Hao Zhang ◽  
Fenglian Sun ◽  
...  

In this paper, solderability, microstructure and hardness of SAC0705-xNi solder joints on Cu and graphene-coated Cu (G-Cu) substrates were studied. As Ni content increases in the solder, the solderability improves gradually on both the Cu and G-Cu substrates. The solderability of SAC0705-xNi is better on G-Cu substrate than that on Cu substrate. The increasing Ni content in the solder has a positive effect on the microstructure refinement of both the kinds of substrates. Such effect is more significant on G-Cu substrate than that on Cu substrate. With the increase of Ni content, the thickness of the interfacial intermetallic compound (IMC) shows an increasing trend first and then decreasing trend on the two kinds of substrates. Since the graphene layer works as a diffusion barrier, the IMC on G-Cu is thinner than that on Cu substrate. The addition of Ni leads to the strengthening of the microstructure and thus increases the hardness of the solder bulks.


Sign in / Sign up

Export Citation Format

Share Document