Effect of CNTs on the intermetallic compound growth between Sn solder and Cu substrate during aging and reflowing

2021 ◽  
Vol 32 (3) ◽  
pp. 2655-2666
Author(s):  
Kai-kai Xu ◽  
Liang Zhang ◽  
Nan Jiang
2019 ◽  
Vol 99 ◽  
pp. 62-73 ◽  
Author(s):  
Junghwan Bang ◽  
Dong-Yurl Yu ◽  
Yong-Ho Ko ◽  
Jun-Hyuk Son ◽  
Hiroshi Nishikawa ◽  
...  

2010 ◽  
Vol 25 (2) ◽  
pp. 359-367 ◽  
Author(s):  
Cong-qian Cheng ◽  
Jie Zhao ◽  
Yang Xu

The kinetics of intermetallic compound (IMC) layer and Cu dissolution at Sn1.5Cu/Cu interface under high magnetic field was experimentally examined. It is found that the IMC layer growth is controlled by flux-driven ripening process. The high magnetic field promotes the growth of IMC layer, retards the dissolution of Cu substrate, and decreases the content of Cu solute at the liquid–IMC interface front. Based on the experimental results, it is considered that the magnetization induced by magnetic field promotes the ripening process for IMC layer growth. The Lorentz force dampening the convection and magnetization decreasing the Cu solubility limit can retard the Cu dissolution and change the solute distribution at the liquid–IMC interface front.


2019 ◽  
Vol 33 (01) ◽  
pp. 1850425 ◽  
Author(s):  
Hongming Cai ◽  
Yang Liu ◽  
Shengli Li ◽  
Hao Zhang ◽  
Fenglian Sun ◽  
...  

In this paper, solderability, microstructure and hardness of SAC0705-xNi solder joints on Cu and graphene-coated Cu (G-Cu) substrates were studied. As Ni content increases in the solder, the solderability improves gradually on both the Cu and G-Cu substrates. The solderability of SAC0705-xNi is better on G-Cu substrate than that on Cu substrate. The increasing Ni content in the solder has a positive effect on the microstructure refinement of both the kinds of substrates. Such effect is more significant on G-Cu substrate than that on Cu substrate. With the increase of Ni content, the thickness of the interfacial intermetallic compound (IMC) shows an increasing trend first and then decreasing trend on the two kinds of substrates. Since the graphene layer works as a diffusion barrier, the IMC on G-Cu is thinner than that on Cu substrate. The addition of Ni leads to the strengthening of the microstructure and thus increases the hardness of the solder bulks.


Sign in / Sign up

Export Citation Format

Share Document