Two‐Steps of Gelation System Enhanced the Stability of Syzygium cumini Anthocyanins by Encapsulation with Sodium Alginate, Maltodextrin, Chitosan and Gum Arabic

Author(s):  
Mohamed Abdin ◽  
Mohamed Abdelbaset Salama ◽  
R. M. A. Gawad ◽  
Mohamed Ahmed Fathi ◽  
Fawze Alnadari
2020 ◽  
pp. 61-75
Author(s):  
Olufunke Ezekiel ◽  
Oloruntobiloba Ojuola ◽  
Olajide Adedeji

This study investigated the stability of Lactobacillus rhamnosus GG (LGG) in cocoa juice. Lactobacillus rhamnosus GG was encapsulated separately with sodium alginate and sodium alginate+gum Arabic, and incorporated into cocoa pulp juice. Un-encapsulated LGG (free cell) served as a control. The viability of free and encapsulated LGG in cocoa juice and simulated gastrointestinal conditions was evaluated. The juice was stored at 4 ?C for 28 days and its chemical composition was determined weekly. Colour attributes and sensory properties of the freshly prepared juice were also determined. The percentage yield of LGG encapsulated with sodium alginate and sodium alginate+gum Arabic was 80.8 and 89.9%, respectively. Sodium alginate+gum Arabic encapsulated LGG showed higher viability in cocoa juice and simulated gastrointestinal conditions than free cell and LGG encapsulated with sodium alginate only. There was no significant (p>0.05) difference in the pH of cocoa juice that contained sodium alginate only (CJSA) and the one that contained sodium alginate+gum Arabic (CJAG). Titratable acidity of CJAG was significantly (p<0.05) higher than CJSA throughout the storage. Significantly higher pH, total soluble solids, and sugar were recorded for cocoa juice that contained the free cell (CJFC) compared to CJSA and CJAG. There was no significant (p>0.05) difference between CJSA and CJAG in terms of the degree of lightness, however, the samples differed significantly (p<0.05) in terms of chroma, and colour intensity. There was no significant (p>0.05) difference between CJFC and CJAG in terms of colour, appearance, aroma, taste, and consistency. This study showed that the encapsulation of LGG with sodium alginate and gum Arabic improved its stability in cocoa juice.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Glaucia A. Rocha-Selmi ◽  
Carmen S. Favaro-Trindade ◽  
Carlos R. F. Grosso

The interest in lycopene has increased in recent years due to studies that associate it with the reduction in risk of developing cardiovascular diseases and cancer. However, due to its high degree of unsaturation, this carotenoid is inclined to isomerize and oxidize during processing and storage, making it difficult to use in the food industry. Microencapsulation can improve this situation, increasing its stability and making incorporation into food formulations possible. Thus, the aim of this study was to microencapsulate lycopene by complex coacervation using gelatin and gum Arabic as the encapsulating agents. The microcapsules were evaluated based on the encapsulation efficiency and their morphology and then submitted to a stability test and applied in cake making. Most of the systems studied presented spherical microcapsules with defined walls. The encapsulation efficiency values were above 90%, and the average diameter of the capsules ranged from 61 to 144 μm. The stability test showed that microencapsulation offered greater protection to the lycopene as compared to its free form. The application of nonfreeze dried coacervated microcapsules in cake making was satisfactory, but the color transference was low when freezedried coacervated microcapsules were used.


Molecules ◽  
2020 ◽  
Vol 25 (9) ◽  
pp. 2244 ◽  
Author(s):  
Abdelkader Hassani ◽  
Syed Mahmood ◽  
Hamid Hammad Enezei ◽  
Siti Aslina Hussain ◽  
Hamad Ali Hamad ◽  
...  

The approach of drug delivery systems emphasizes the use of nanoparticles as a vehicle, offering the optional property of delivering drugs as a single dose rather than in multiple doses. The current study aims to improve antioxidant and drug release properties of curcumin loaded gum Arabic-sodium alginate nanoparticles (Cur/ALG-GANPs). The Cur/ALG-GANPs were prepared using the ionotropic gelation technique and further subjected to physico-chemical characterization using attenuated total reflectance–Fourier transform infrared (ATR-FTIR), X-ray diffractometry (XRD), differential scanning calorimetry (DSC), size distribution, and transmission electron microscopy (TEM). The size of Cur/ALG-GANPs ranged between 10 ± 0.3 nm and 190 ± 0.1 nm and the zeta potential was –15 ± 0.2 mV. The antioxidant study of Cur/ALG-GANPs exhibited effective radical scavenging capacity for 1,1-diphenyl-2-picrylhydrazyl (DPPH) at concentrations that ranged between 30 and 500µg/mL. Cytotoxicity was performed using MTT assay to measure their potential in inhibiting the cell growth and the result demonstrated a significant anticancer activity of Cur/ALG-GANPs against human liver cancer cells (HepG2) than in colon cancer (HT29), lung cancer (A549) and breast cancer (MCF7) cells. Thus, this study indicates that Cur/ALG-GANPs have promising anticancer properties that might aid in future cancer therapy.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10165
Author(s):  
Nucharee Juntarachot ◽  
Sasithorn Sirilun ◽  
Duangporn Kantachote ◽  
Phakkharawat Sittiprapaporn ◽  
Piyachat Tongpong ◽  
...  

Background The accumulation of plaque causes oral diseases. Dental plaque is formed on teeth surfaces by oral bacterial pathogens, particularly Streptococcus mutans, in the oral cavity. Dextranase is one of the enzymes involved in antiplaque accumulation as it can prevent dental caries by the degradation of dextran, which is a component of plaque biofilm. This led to the idea of creating toothpaste containing dextranase for preventing oral diseases. However, the dextranase enzyme must be stable in the product; therefore, encapsulation is an attractive way to increase the stability of this enzyme. Methods The activity of food-grade fungal dextranase was measured on the basis of increasing ratio of reducing sugar concentration, determined by the reaction with 3, 5-dinitrosalicylic acid reagent. The efficiency of the dextranase enzyme was investigated based on its minimal inhibitory concentration (MIC) against biofilm formation by S. mutans ATCC 25175. Box-Behnken design (BBD) was used to study the three factors affecting encapsulation: pH, calcium chloride concentration, and sodium alginate concentration. Encapsulation efficiency (% EE) and the activity of dextranase enzyme trapped in alginate beads were determined. Then, the encapsulated dextranase in alginate beads was added to toothpaste base, and the stability of the enzyme was examined. Finally, sensory test and safety evaluation of toothpaste containing encapsulated dextranase were done. Results The highest activity of the dextranase enzyme was 4401.71 unit/g at a pH of 6 and 37 °C. The dextranase at its MIC (4.5 unit/g) showed strong inhibition against the growth of S. mutans. This enzyme at 1/2 MIC also showed a remarkable decrease in biofilm formation by S. mutans. The most effective condition of dextranase encapsulation was at a pH of 7, 20% w/v calcium chloride and 0.85% w/v sodium alginate. Toothpaste containing encapsulated dextranase alginate beads produced under suitable condition was stable after 3 months of storage, while the sensory test of the product was accepted at level 3 (like slightly), and it was safe. Conclusion This research achieved an alternative health product for oral care by formulating toothpaste with dextranase encapsulated in effective alginate beads to act against cariogenic bacteria, like S. mutants, by preventing dental plaque.


2007 ◽  
Vol 3 (1) ◽  
pp. 133-142 ◽  
Author(s):  
Ishaq Abdullah Zaafarany

Abstract          The kinetics of sol-gel transformation between A13+, La 3+ and Th4+ metal ion electrolytes and sodium alginate sol have been studied complexometrically at various  temperatures. In the presence of a large excess of sodium alginate sol concentration over that of metal ion electrolyte, the pseudo first–order plots of exchange showed sigmoidal curves with two distinct stages. The initial part was relatively fast and curved significantly at early times, followed by a slow decrease in the rates of exchange over longer time periods. The rate constants of gelation showed second-order overall kinetics which was first order in the concentration of both reactants. The thermodynamic parameters have been evaluated and tentative gelation mechanisms consistent with the kinetic results of gelation are suggested. The stability of these ionotropic metal-alginate complexes has been discussed in terms of the coordination geometry and strength of chelated bonds.


2021 ◽  
Vol 72 (1) ◽  
pp. 18-24
Author(s):  
Noor Sabeeh Majeed ◽  
Hussein A. Alabdly ◽  
Hussam Nadum Abdalraheem Al Ani ◽  
Dumitru Pascu ◽  
Aurelia Cristina Nechifor

Stability of nanofluids is one of the most important factors to ensure the most benefit of the properties of nanoparticles. Zinc oxide was used in the research with concentration between (0.2-1) wt. % with ethylene glycol base fluid. The stability of ZnO nanofluid was enhanced by adding two types of surfactants Tx-100 and Gum Arabic with concentration of (0.1-0.5) vol. % to stabilize the ZnO nanoparticles in the base fluid. The results showed that the Gum Arabic surfactant led to more stable fluid than that of Tx-100; this was shown from zeta potential and UV spectroscopy measurements. The thermal conductivity coefficient was also measured, and the results showed that the thermal conductivity increased with adding surfactant than without using a stabilizer.


2011 ◽  
Vol 418-420 ◽  
pp. 192-195
Author(s):  
Dong Qi Liu ◽  
Ying Liu ◽  
Shu Fa Han ◽  
Yu Feng Zhang ◽  
Cui Yu Yin

In this article we successfully prepared calamine / sodium alginate viscose fiber. Good dispersion and stability of the modified solution was prepared by dispersing calamine in alkaline solution of sodium alginate, and then mixed it with viscose spinning solution by spinning injection methods. Moreover, the stability of calamine / sodium alginate solution, the effect of concentration of calamine on the fiber properties is studied in this paper. Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and physical mechanical performance are test to characterize the structure and the performance of the calamine / sodium alginate viscose fiber.


LWT ◽  
2020 ◽  
pp. 110571
Author(s):  
Junhua Li ◽  
Jiali Zhai ◽  
Brendan Dyett ◽  
Yanjun Yang ◽  
Calum J. Drummond ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document