Influence of the Composition of Electrolyte for Hard Anodizing of Aluminum on the Characteristics of Oxide Layer

2022 ◽  
Author(s):  
M. M. Student ◽  
I. M. Pohrelyuk ◽  
V. M. Hvozdetskyi ◽  
H. H. Veselivska ◽  
Kh. R. Zadorozhna ◽  
...  
Keyword(s):  
2019 ◽  
Vol 2 (02) ◽  
pp. 37-40
Author(s):  
Mochamad Muzaki ◽  
Endi Sutikno ◽  
Putu Hadi Setyorini

Anodizing is an electro-chemical process used to coat metal surfaces with a stable oxide layer. The function of this oxide layer is to increase corrosion resistance. The purpose of this study is determine the effect of variations in current density on the continuous hard anodizing process carried out in sulfuric acid electrolyte solution (H2SO4) on the corrosion rate of aluminum alloy 6061. Corrosion rate testing is carried out through salt fog testing. The values of the current variation used are 1 A/dm2; 2 A/dm2; 3 A/dm2; 4 A/dm2; and 5 A/dm2.  Statistical calculations using the analysis of variance proved the current density in the anodizing process has a significant effect on the corrosion resistance of the anodizing workpiece. Corrosion testing provides information that the highest corrosion rate is an anodizing workpiece with a current density of 1 A/dm2, which is 125.6861 mdd, then 2 A/dm2 of 104.33333 mdd. The lowest corrosion rate value obtained at the use of current density 3 A/dm2, that is 51,8083 mdd. Meanwhile, the use of current density of 4 A/dm2 has a slightly higher corrosion rate compared to the use of current density of 3 A/dm2, which is 86.5444 mdd. Furthermore, the use of current density of 5 A/dm2 has the highest decay rate, so that the formed oxide layer will be damaged, as seen from the higher corrosion rate of the material, which is 100.8361 mdd.


Author(s):  
C. O. Jung ◽  
S. J. Krause ◽  
S.R. Wilson

Silicon-on-insulator (SOI) structures have excellent potential for future use in radiation hardened and high speed integrated circuits. For device fabrication in SOI material a high quality superficial Si layer above a buried oxide layer is required. Recently, Celler et al. reported that post-implantation annealing of oxygen implanted SOI at very high temperatures would eliminate virtually all defects and precipiates in the superficial Si layer. In this work we are reporting on the effect of three different post implantation annealing cycles on the structure of oxygen implanted SOI samples which were implanted under the same conditions.


2015 ◽  
Vol 53 (8) ◽  
pp. 535-540 ◽  
Author(s):  
Young Gun Ko ◽  
Dong Hyuk Shin ◽  
Hae Woong Yang ◽  
Yeon Sung Kim ◽  
Joo Hyun Park ◽  
...  

2003 ◽  
Vol 762 ◽  
Author(s):  
H. Águas ◽  
L. Pereira ◽  
A. Goullet ◽  
R. Silva ◽  
E. Fortunato ◽  
...  

AbstractIn this work we present results of a study performed on MIS diodes with the following structure: substrate (glass) / Cr (2000Å) / a-Si:H n+ (400Å) / a-Si:H i (5500Å) / oxide (0-40Å) / Au (100Å) to determine the influence of the oxide passivation layer grown by different techniques on the electrical performance of MIS devices. The results achieved show that the diodes with oxides grown using hydrogen peroxide present higher rectification factor (2×106)and signal to noise (S/N) ratio (1×107 at -1V) than the diodes with oxides obtained by the evaporation of SiO2, or by the chemical deposition of SiO2 by plasma of HMDSO (hexamethyldisiloxane), but in the case of deposited oxides, the breakdown voltage is higher, 30V instead of 3-10 V for grown oxides. The ideal oxide thickness, determined by spectroscopic ellipsometry, is dependent on the method used to grow the oxide layer and is in the range between 6 and 20 Å. The reason for this variation is related to the degree of compactation of the oxide produced, which is not relevant for applications of the diodes in the range of ± 1V, but is relevant when high breakdown voltages are required.


2005 ◽  
Vol 879 ◽  
Author(s):  
Scott K. Stanley ◽  
John G. Ekerdt

AbstractGe is deposited on HfO2 surfaces by chemical vapor deposition (CVD) with GeH4. 0.7-1.0 ML GeHx (x = 0-3) is deposited by thermally cracking GeH4 on a hot tungsten filament. Ge oxidation and bonding are studied at 300-1000 K with X-ray photoelectron spectroscopy (XPS). Ge, GeH, GeO, and GeO2 desorption are measured with temperature programmed desorption (TPD) at 400-1000 K. Ge initially reacts with the dielectric forming an oxide layer followed by Ge deposition and formation of nanocrystals in CVD at 870 K. 0.7-1.0 ML GeHx deposited by cracking rapidly forms a contacting oxide layer on HfO2 that is stable from 300-800 K. Ge is fully removed from the HfO2 surface after annealing to 1000 K. These results help explain the stability of Ge nanocrystals in contact with HfO2.


2018 ◽  
Vol 49 (15) ◽  
pp. 1445-1458
Author(s):  
Deheng Shi ◽  
Fenghui Zou ◽  
Zunlue Zhu ◽  
Jinfeng Sun

2018 ◽  
Author(s):  
Rituja Patil ◽  
Aayush Mantri ◽  
Stephen House ◽  
Judith C. Yang ◽  
James McKone

We have studied the composition and morphology of Ni-Mo alloys. These alloys consist of a Ni-rich core surrounded by Mo-rich oxide layer. The HER activity of Ni-Mo alloys was seen to be limited by interfacial resistance rather than kinetic and solution transport. Vulcan carbon, a conductive support mitigate the resistive limitations by providing conductive percolation networks.


Author(s):  
Yanhua Huang ◽  
Lei Zhu ◽  
Kenny Ong ◽  
Hanwei Teo ◽  
Younan Hua

Abstract Contamination in the gate oxide layer is the most common effect which cause the gate oxide integrate (GOI) issue. Dynamic Secondary Ion Mass Spectrometry (SIMS) is a mature tool for GOI contamination analysis. During the sample preparation, all metal and IDL layers above poly should be removed because the presence of these layers added complexity for the subsequent SIMS analysis. The normal delayering process is simply carried out by soaking the sample in the HF solution. However, the poly surface is inevitably contaminated by surroundings even though it is already a practice to clean with DI rinse and tape. In this article, TOFSIMS with low energy sputter gun is used to clean the sample surface after the normal delayering process. The residue signals also can be monitored by TOF SIMS during sputtering to confirm the cross contamination is cleared. After that, a much lower background desirable by dynamic SIMS. Thus an accurate depth profile in gate oxide layer can be achieved without the interference from surface.


Sign in / Sign up

Export Citation Format

Share Document