scholarly journals Improving architectural traits of maize inflorescences

2021 ◽  
Vol 41 (3) ◽  
Author(s):  
Zongliang Chen ◽  
Andrea Gallavotti

AbstractThe domestication and improvement of maize resulted in radical changes in shoot architecture relative to its wild progenitor teosinte. In particular, critical modifications involved a reduction of branching and an increase in inflorescence size to meet the needs for human consumption and modern agricultural practices. Maize is a major contributor to global agricultural production by providing large and inexpensive quantities of food, animal feed, and ethanol. Maize is also a classic system for studying the genetic regulation of inflorescence formation and its enlarged female inflorescences directly influence seed production and yield. Studies on the molecular and genetic networks regulating meristem proliferation and maintenance, including receptor-ligand interactions, transcription factor regulation, and hormonal control, provide important insights into maize inflorescence development and reveal potential avenues for the targeted modification of specific architectural traits. In this review, we summarize recent findings on the molecular mechanisms controlling inflorescence formation and discuss how this knowledge can be applied to improve maize productivity in the face of present and future environmental challenges.

Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 666
Author(s):  
Li Du ◽  
Wei Chen ◽  
Zixin Cheng ◽  
Si Wu ◽  
Jian He ◽  
...  

Spermatogenesis is a complex and dynamic process which is precisely controlledby genetic and epigenetic factors. With the development of new technologies (e.g., single-cell RNA sequencing), increasingly more regulatory genes related to spermatogenesis have been identified. In this review, we address the roles and mechanisms of novel genes in regulating the normal and abnormal spermatogenesis. Specifically, we discussed the functions and signaling pathways of key new genes in mediating the proliferation, differentiation, and apoptosis of rodent and human spermatogonial stem cells (SSCs), as well as in controlling the meiosis of spermatocytes and other germ cells. Additionally, we summarized the gene regulation in the abnormal testicular microenvironment or the niche by Sertoli cells, peritubular myoid cells, and Leydig cells. Finally, we pointed out the future directions for investigating the molecular mechanisms underlying human spermatogenesis. This review could offer novel insights into genetic regulation in the normal and abnormal spermatogenesis, and it provides new molecular targets for gene therapy of male infertility.


2015 ◽  
Vol 72 (4) ◽  
pp. 579-584 ◽  
Author(s):  
A. Muramatsu ◽  
H. Ito ◽  
A. Sasaki ◽  
A. Kajihara ◽  
T. Watanabe

To achieve enhanced nitrogen removal, we modified a cultivation system with circulated irrigation of treated municipal wastewater by using rice for animal feed instead of human consumption. The performance of this modified system was evaluated through a bench-scale experiment by comparing the direction of circulated irrigation (i.e. passing through paddy soil upward and downward). The modified system achieved more than three times higher nitrogen removal (3.2 g) than the system in which rice for human consumption was cultivated. The removal efficiency was higher than 99.5%, regardless of the direction of circulated irrigation. Nitrogen in the treated municipal wastewater was adsorbed by the rice plant in this cultivation system as effectively as chemical fertilizer used in normal paddy fields. Circulated irrigation increased the nitrogen released to the atmosphere, probably due to enhanced denitrification. Neither the circulation of irrigation water nor its direction affected the growth of the rice plant and the yield and quality of harvested rice. The yield of rice harvested in this system did not reach the target value in normal paddy fields. To increase this yield, a larger amount of treated wastewater should be applied to the system, considering the significant amount of nitrogen released to the atmosphere.


1998 ◽  
Vol 8 (4) ◽  
pp. 415-422 ◽  
Author(s):  
Brenda Winkel Shirley

AbstractFlavonoids are secondary metabolites that are present at high levels in most plant seeds and grains. These compounds appear to play vital roles in defence against pathogens and predators and contribute to physiological functions such as seed maturation and dormancy. At the same time, particular subclasses of flavonoids, such as the proanthocyanidins (condensed tannins), negatively impact the use of seeds and grains in animal feed and can add undesirable qualities to food products for human consumption. This article presents an overview of investigations into the physiological and agronomic aspects of seed and grain flavonoids as well as a review of molecular genetic studies, particularly in maize,Arabidopsisand soybean, where mutants deficient in flavonoid biosynthesis provide useful tools for stydying the metabolic machinery underlying the accumulation of these compounds in reproductive structures.


2016 ◽  
Vol 283 (1837) ◽  
pp. 20160841 ◽  
Author(s):  
Krista K. Ingram ◽  
Deborah M. Gordon ◽  
Daniel A. Friedman ◽  
Michael Greene ◽  
John Kahler ◽  
...  

Task allocation among social insect workers is an ideal framework for studying the molecular mechanisms underlying behavioural plasticity because workers of similar genotype adopt different behavioural phenotypes. Elegant laboratory studies have pioneered this effort, but field studies involving the genetic regulation of task allocation are rare. Here, we investigate the expression of the foraging gene in harvester ant workers from five age- and task-related groups in a natural population, and we experimentally test how exposure to light affects foraging expression in brood workers and foragers. Results from our field study show that the regulation of the foraging gene in harvester ants occurs at two time scales: levels of foraging mRNA are associated with ontogenetic changes over weeks in worker age, location and task, and there are significant daily oscillations in foraging expression in foragers. The temporal dissection of foraging expression reveals that gene expression changes in foragers occur across a scale of hours and the level of expression is predicted by activity rhythms: foragers have high levels of foraging mRNA during daylight hours when they are most active outside the nests. In the experimental study, we find complex interactions in foraging expression between task behaviour and light exposure. Oscillations occur in foragers following experimental exposure to 13 L : 11 D (LD) conditions, but not in brood workers under similar conditions. No significant differences were seen in foraging expression over time in either task in 24 h dark (DD) conditions. Interestingly, the expression of foraging in both undisturbed field and experimentally treated foragers is also significantly correlated with the expression of the circadian clock gene, cycle . Our results provide evidence that the regulation of this gene is context-dependent and associated with both ontogenetic and daily behavioural plasticity in field colonies of harvester ants. Our results underscore the importance of assaying temporal patterns in behavioural gene expression and suggest that gene regulation is an integral mechanism associated with behavioural plasticity in harvester ants.


2002 ◽  
Vol 85 (3) ◽  
pp. 762-767 ◽  
Author(s):  
Graham Brookes

Abstract The use of the technology of genetic modification (GM) in European agriculture and the food supply chain is currently controversial. Because of strong anti-GM technology sentiments, the use of ingredients derived from plants containing GM have largely been eliminated from foods manufactured for direct human consumption by the food supply chain in much of the European Union (EU). During the past year, the attention of those opposed to the technology has turned to the use of GM ingredients in livestock production systems by incorporation of GM soy and maize in animal feed. A discussion is presented of the key issues relating to this subject, focusing on how supplies of GM or non-GM products are segregated or how their identities are preserved. The discussion is centered on GM maize and soybeans into which agronomic traits, such as herbicide tolerance and/or insect resistance, have been incorporated. These are currently the only crops into which some varieties containing GM have been approved for use in the EU.


Endocrinology ◽  
2010 ◽  
Vol 151 (12) ◽  
pp. 5710-5720 ◽  
Author(s):  
Yoshinao Katsu ◽  
Kazumi Matsubara ◽  
Satomi Kohno ◽  
Yoichi Matsuda ◽  
Michihisa Toriba ◽  
...  

In many vertebrates, steroid hormones are essential for ovarian differentiation during a critical developmental stage as well as promoting the growth and differentiation of the adult female reproductive system. Although studies have been extensively conducted in mammals and a few fish, amphibians, and bird species, the molecular mechanisms of sex steroid hormone (estrogens) action have been poorly examined in reptiles. Here, we evaluate hormone receptor and ligand interactions in two species of snake, the Okinawa habu (Protobothrops flavoviridis, Viperidae) and the Japanese four-striped rat snake (Elaphe quadrivirgata, Colubridae) after the isolation of cDNAs encoding estrogen receptor α (ESR1) and estrogen receptor β (ESR2). Using a transient transfection assay with mammalian cells, the transcriptional activity of reptilian (Okinawa habu, Japanese four-striped rat snake, American alligator, and Florida red-belly freshwater turtle) ESR1 and ESR2 was examined. All ESR proteins displayed estrogen-dependent activation of transcription via an estrogen-response element-containing promoter; however, the responsiveness to various estrogens was different. Further, we determined the chromosomal locations of the snake steroid hormone receptor genes. ESR1 and ESR2 genes were localized to the short and long arms of chromosome 1, respectively, whereas androgen receptor was localized to a pair of microchromosomes in the two snake species examined. These data provide basic tools that allow future studies examining receptor-ligand interactions and steroid endocrinology in snakes and also expands our knowledge of sex steroid hormone receptor evolution.


Author(s):  
Nurbubu T. Moldogazieva ◽  
Daria S. Ostroverkhova ◽  
Nikolai N. Kuzmich ◽  
Vladimir V. Kadochnikov ◽  
Alexander A. Terentiev ◽  
...  

Alpha-fetoprotein (AFP) is a major embryo- and tumor-associated protein capable of binding and transporting variety of hydrophobic ligands including estrogens. AFP has been shown to inhibit estrogen receptor (ER)-positive tumor growth and this can be attributed to its estrogen-binding ability. Despite AFP has long been investigated, its three-dimensional (3D) structure has not been experimentally resolved and molecular mechanisms underlying AFP-ligand interaction remain obscure. In our study we constructed homology-based 3D model of human AFP (HAFP) with the purpose to perform docking of ERα ligands, three agonists (17β-estradiol, estrone and diethylstilbestrol) and three antagonists (tamoxifen, afimoxifene and endoxifen) into the obtained structure. Based on ligand docked scoring function, we identified three putative estrogen- and antiestrogen-binding sites with different ligand binding affinities. Two high-affinity sites were located in (i) a tunnel formed within HAFP subdomains IB and IIA and (ii) opposite side of the molecule in a groove originating from cavity formed between domains I and III, while (iii) the third low-affinity site was found at the bottom of the cavity. 100 ns MD simulation allowed studying their geometries and showed that HAFP-estrogen interactions occur due to van der Waals forces, while both hydrophobic and electrostatic interactions were almost equally involved in HAFP-antiestrogen binding. MM/GBSA rescoring method estimated binding free energies (ΔGbind) and showed that antiestrogens have higher affinities to HAFP as compared to estrogens. We performed in silico point substitutions of amino acid residues to confirm their roles in HAFP-ligand interactions and showed that Thr132, Leu138, His170, Phe172, Ser217, Gln221, His266, His316, Lys453, and Asp478 residues along two disulfide bonds, Cys224-Cys270 and Cys269-Cys277 have key roles in both HAFP-estrogen and HAFP-antiestrogen binding. Data obtained in our study contribute to understanding mechanisms underlying protein-ligand interactions and anti-cancer therapy strategies based on ER-binding ligands.


Author(s):  
Hamza Armghan Noushahi ◽  
Mubashar Hussain

The health of genetically engineered foods/plants, which is one of the significant issues has been raised in recent years. Various non-governmental organizations and customers recommended that all GM foods before authorization for human consumption should be subject to long-term animal feed studies. The fundamental purpose of this review is to assess the new potential harmful impact/safety assessment of genetically engineered plants for the use of humans. A balance in the number of research groups, depending on their research, a variety of GM crops (maize and soybeans in particular) are varied as for traditional non-genetically modified plants. It is worth remembering that most of the experiments were carried out in biotechnology firms that sell these GM plants. In this review, we discussed in detail the risk assessment of genetically modified plants.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Reann Garrett ◽  
Danielle Bellmer ◽  
William McGlynn ◽  
Patricia Rayas-Duarte

Brewer’s spent grain (BSG) is a processing waste generated in large quantities by the brewing industry. It is estimated that over 38 million tons of BSG is produced worldwide each year and is usually used as animal feed, composted, or thrown into landfills. BSG contains valuable nutritional components, including protein, fiber, and antioxidants. Due to its brittle texture, strong nutty flavors, and dark color profiles, BSG has seen limited use in food products for human consumption. The objective of this study was to develop a palatable chip product that maximized the level of inclusion of BSG. Chips were produced that contained BSG levels ranging from 8% to 40%, and the physical and sensory properties of the chips were evaluated. Spent grain samples were provided by Iron Monk in Stillwater and were dried at a low temperature and milled into flour for use in the chip formulation. BSG chips were evaluated for water activity, color, and texture (fracture force). An informal sensory evaluation was conducted to evaluate flavor, texture, and probability of purchase using a 5-point hedonic rating scale. Results showed that there were no significant differences in the texture of the chips containing different levels of BSG. The color measurements showed no significant differences between L ∗ and a ∗ values for the chips containing different inclusion levels of BSG, but there were some differences in the b ∗ values. Results from the sensory evaluation showed that consumers preferred the texture of chips with 40% BSG over chips with 8% BSG, and they were also more likely to purchase the 40% BSG chips. There were no significant differences in flavor among the chips containing different inclusion levels of BSG. These results suggest that, for a chip-type product, BSG inclusion levels up to 40% are possible with positive consumer responses. Development of an alternative value-added product represents an opportunity for breweries nationwide to turn a processing waste into a future asset.


2006 ◽  
Vol 290 (6) ◽  
pp. F1295-F1302 ◽  
Author(s):  
Stan F. J. van de Graaf ◽  
Joost G. J. Hoenderop ◽  
René J. M. Bindels

The epithelial Ca2+ channels TRPV5 and TRPV6 are the most Ca2+-selective members of the TRP channel superfamily. These channels are the prime target for hormonal control of the active Ca2+ flux from the urine space or intestinal lumen to the blood compartment. Insight into their regulation is, therefore, pivotal in our understanding of the (patho)physiology of Ca2+ homeostasis. The recent elucidation of TRPV5/6-associated proteins has provided new insight into the molecular mechanisms underlying the regulation of these channels. In this review, we describe the various means of TRPV5/6 regulation, the role of channel-associated proteins herein, and the relationship between both processes.


Sign in / Sign up

Export Citation Format

Share Document