scholarly journals Do Health Promoting Compounds of Flaxseed Attenuate Weight Gain Via Modulation of Obesity Gene Expression?

2020 ◽  
Vol 75 (3) ◽  
pp. 441-445
Author(s):  
A. Evenocheck ◽  
Y. Rhee ◽  
C. Hall
2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Sen Lin ◽  
Rajesh K. Singh ◽  
Moehninsi ◽  
Duroy A. Navarre

AbstractFlavonols and other phenylpropanoids protect plants from biotic and abiotic stress and are dietarily desirable because of their health-promoting properties. The ability to develop new potatoes (Solanum tuberosum) with optimal types and amounts of phenylpropanoids is limited by lack of knowledge about the regulatory mechanisms. Exogenous sucrose increased flavonols, whereas overexpression of the MYB StAN1 induced sucrolytic gene expression. Heterologous StAN1 protein bound promoter fragments from sucrolytic genes (SUSY1 and INV1). Two additional MYBs and one microRNA were identified that regulated potato flavonols. Overexpression analysis showed MYB12A and C increased amounts of flavonols and other phenylpropanoids. Endogenous flavonol amounts in light-exposed organs were much higher those in the dark. Expression levels of StMYB12A and C were high in flowers but low in tubers. Transient overexpression of miR858 altered potato flavonol metabolism. Endogenous StmiR858 expression was much lower in flowers than leaves and correlated with flavonol amounts in these organs. Collectively, these findings support the hypothesis that sucrose, MYBs, and miRNA control potato phenylpropanoid metabolism in a finely tuned manner that includes a feedback loop between sucrose and StAN1. These findings will aid in the development of potatoes with phenylpropanoid profiles optimized for crop performance and human health.


PLoS ONE ◽  
2019 ◽  
Vol 14 (4) ◽  
pp. e0215477 ◽  
Author(s):  
Jesus Sainz ◽  
Carlos Prieto ◽  
Benedicto Crespo-Facorro

2007 ◽  
Vol 97 (2) ◽  
pp. 389-398 ◽  
Author(s):  
Patricia Pérez-Matute ◽  
Nerea Pérez-Echarri ◽  
J. Alfredo Martínez ◽  
Amelia Marti ◽  
María J. Moreno-Aliaga

n-3 PUFA have shown potential anti-obesity and insulin-sensitising properties. However, the mechanisms involved are not clearly established. The aim of the present study was to assess the effects of EPA administration, one of the n-3 PUFA, on body-weight gain and adiposity in rats fed on a standard or a high-fat (cafeteria) diet. The actions on white adipose tissue lipolysis, apoptosis and on several genes related to obesity and insulin resistance were also studied. Control and cafeteria-induced overweight male Wistar rats were assigned into two subgroups, one of them daily received EPA ethyl ester (1 g/kg) for 5 weeks by oral administration. The high-fat diet induced a very significant increase in both body weight and fat mass. Rats fed with the cafeteria diet and orally treated with EPA showed a marginally lower body-weight gain (P = 0·09), a decrease in food intake (P < 0·01) and an increase in leptin production (P < 0·05). EPA administration reduced retroperitoneal adipose tissue weight (P < 0·05) which could be secondary to the inhibition of the adipogenic transcription factor PPARγ gene expression (P < 0·001), and also to the increase in apoptosis (P < 0·05) found in rats fed with a control diet. TNFα gene expression was significantly increased (P < 0·05) by the cafeteria diet, while EPA treatment was able to prevent (P < 0·01) the rise in this inflammatory cytokine. Adiposity-corrected adiponectin plasma levels were increased by EPA. These actions on both TNFα and adiponectin could explain the beneficial effects of EPA on insulin resistance induced by the cafeteria diet.


Author(s):  
Heon-Myung Lee ◽  
Hong-Kun Rim ◽  
Jong-Hwan Seo ◽  
Yoon-Bum Kook ◽  
Sung-Kew Kim ◽  
...  

2021 ◽  
Vol 5 (Supplement_2) ◽  
pp. 503-503
Author(s):  
Zhiji Huang ◽  
Yafang Ma ◽  
Chunbao Li

Abstract Objectives Kappa-Carrageenan(CGN) is a widely used food additive in the meat industry and a highly viscous soluble dietary fiber which can hardly be fermented. It has been shown to be able to regulate the energy metabolism and inhibit diet-induced obesity. However, the mechanism is not well understood. The purpose of this study is to investigate the mechanisms of κ-carrageenan to inhibit the body weight gain. Methods A high-fat diet incorporated with lard, pork protein and CGN (2% or 4%, w/w) was given to C57BL/6J mice for 90 days. The energy intake and weight changes were measured every three days. After the dietary intervention, mice were sacrificed, liver and epididymal adipose tissues were taken for real-time polymerase chain reaction (RT-qPCR) analysis. Results The CGN in the high-fat diet restricted weight gain by decreasing liver and adipose mass without inhibiting energy intake.  The genes involving energy expenditure such as Acox1, Acadl, CPT-1A and Sirt1 were upregulated in the mice fed with carrageenan. However, the genes responsible for lipid synthesis were not significantly different compared to the diet-induced obese model. Conclusions The anti-obesity effect of the CGN in high-fat diet could be highly related to the enhancement of energy expenditure through up-regulating the downstream genes which promote β-oxidation by increasing the Sirt1 gene expression in liver. Funding Sources Ministry of Science and Technology of the People's Republic of China (10000 Talent Project)


2021 ◽  
Author(s):  
Sebastião Mauro Bezerra Duarte ◽  
José Tadeu Stefano ◽  
Lucas A. M. Franco ◽  
Roberta C. Martins ◽  
Bruna D. G. C. Moraes ◽  
...  

Abstract Background: The aim of this study was to examine the impact of synbiotic supplementation in obesity and microbiota in ob/ob mice. 20 animals were divided into four groups: Obese Treated (OT), Control (OC), Lean Treated (LT) and Control (LC). All animals received standard diet for 8 weeks. Treated groups received a synbiotic in water while nontreated groups received water. After 8 weeks, all animals were sacrificed and gut tissue mRNA isolation and stool samples by microbiota analysis were collected. Beta-catenin, occludin, cadherin and zonulin were analyzed in gut tissue by RT-qPCR. Results: The synbiotic supplementation reduced body weight gain in OT comparing with OC (p=0.0398), increase of Enterobacteriaceae (p=0.005) and decrease of Cyanobacteria (p=0.047), Clostridiaceae (p=0.026), Turicibacterales (p=0.005) and Coprococcus (p=0.047). A significant reduction of Sutterella bacteria (p=0.009) and Turicibacter (p=0.005) was observed in LT compared to LC. Alpha and beta diversities were differ between all treated groups. Beta-catenin gene expression was significantly decreased in the gut tissue of OT (p≤0.0001) when compared to other groups. No changes were observed in occludin, cadherin and zonulin gene expression in the gut tissue. Conclusion: The synbiotics supplementation prevents excessive weight gain, modulates the gut microbiota, and reduces beta-catenin expression in ob/ob mice.


2021 ◽  
Author(s):  
Niloofar Hassirian ◽  
Ehsan Karimi ◽  
Ehsan Oskoueian

Abstract Background: This research was performed to evaluate the antibacterial and health-promoting potentials of the nanoliposome-encapsulated phenolic rich fraction (PRF) from Alcea rosea leaves as a dietary phytobiotic in mice challenged by enteropathogenic Escherichia coli (E. coil; O157: H7). Results: The overall results demonstrated that the nanoliposome-loaded PRF contained gallic acid, salicylic acid, pyrogallol, cinnamic acid, catechin, naringin, ferulic acid. The E. coil challenge in mice impaired the weight gain, food intake, liver enzymes, lipid peroxidation, morphometric characteristics of the ileum, up-regulated the inflammatory genes (COX2, iNOS), down-regulated the antioxidant-related genes (SOD and GPx) and increased the population of E. coil in the ileum. The dietary inclusion of nonencapsulated PRF and nanoliposome-encapsulated PRF at the concentration of 10 mg TPC/kg BW/day improved these parameters however the nanoliposome-encapsulated PRF appeared to be more effective as compared to nonencapsulated PRF in improving the health parameters in mice. Conclusion: Consequently, the nanoliposome-encapsulated PRF could play a critical role as a promising phytobiotic against E. coil infection in mice.


2019 ◽  
Vol 85 (10) ◽  
pp. S236-S237
Author(s):  
Jessica Baker ◽  
Lauren Blake ◽  
Laura Thornton ◽  
Rachel Guerra ◽  
Christopher Hubel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document