scholarly journals The influence of different wavelengths of LED light on the production of glucosinolates and phenolic compounds and the antioxidant potential in in vitro cultures of Nasturtium officinale (watercress)

Author(s):  
Marta Klimek-Szczykutowicz ◽  
Barbara Prokopiuk ◽  
Kinga Dziurka ◽  
Bożena Pawłowska ◽  
Halina Ekiert ◽  
...  

AbstractCultures of Nasturtium officinale were cultivated in vitro under illumination with different wavelengths of light-emitting diode (LED) light (white LED light—WLED, blue light—B, red light—R, 70% red and 30% blue light—RB, 50% green, 35% red and 15% blue light—RBG, 50% yellow, 35% red and 15% blue light—RBY, 50% far red, 35% red and 15% blue light—RBfR, 50% UV, 35% red and 15% blue light—RBUV, darkness—D), and under white fluorescent light (WF)—control conditions. The study investigated the influence of the applied lighting conditions on biomass growth and the production of glucosinolates, phenolic compounds, as well as photosynthetic pigments, and soluble sugars. The study showed a significant beneficial effect of the RBG light on biomass growth (Gi = 11.81 after 20 days) and the production of glucosinolates. The total glucosinolate content under these conditions increased 5.8 and 1.4 times in comparison with the WF light and D condition, respectively, reaching 237.92 mg 100 g−1 DW. The production of phenolic compounds, sugars, and photosynthetic pigments was comparable to the production under the control conditions. The antioxidant potential of extracts from the cultivated biomass was assessed by the CUPRAC, DPPH, and FRAP assays. Extracts obtained from the biomass of cultures grown under the RBG light had an antioxidant potential similar to that of the control cultures. This is the first report providing evidence of the stimulating effect of light quality on the biomass yield and production of glucosinolates by N. officinale microshoot cultures in vitro.

2018 ◽  
Vol 2018 ◽  
pp. 1-4
Author(s):  
Sarayut Pittarate ◽  
Malee Thungrabeab ◽  
Supamit Mekchay ◽  
Patcharin Krutmuang

Ctenocephalides felis is an ectoparasitic flea species commonly found on dogs and cats. The current study verified the in vitro virulence of conidia of the entomopathogenic fungus Beauveria bassiana produced under different color LED light (red, blue, purple, green, yellow, and white) to adults of C. felis. The fungal isolates were cultivated on malt extract agar (MEA). Bioassay treatments used aerial conidia in test tubes. Adult fleas were obtained from a house cat in Chiang Mai province, Thailand. The experiments were composed of one control and eleven treatment groups. All of the treatments with B. bassiana conidia caused adult mortality after an exposure of 12 h. Among the conditions used in this study, B. bassiana cultured under red LED and fluorescent light were the most effective in causing mortality (100 %) in adult fleas after 36 h. The experimental results indicate that these aerial conidia of B. bassiana have promising potential for use in control of C. felis adult stages.


2017 ◽  
Vol 8 ◽  
Author(s):  
Chun-Xia Li ◽  
Zhi-Gang Xu ◽  
Rui-Qi Dong ◽  
Sheng-Xin Chang ◽  
Lian-Zhen Wang ◽  
...  
Keyword(s):  
Rna Seq ◽  

Author(s):  
Doan Phan Phuong Thao ◽  
Tuan Anh Le ◽  
Phan Ngo Hoang

Polygonum cuspidatum Sieb. et Zucc, a medicinal plant, contains many phenolic compounds such as resveratrol. It has antioxidant, antibacterial, anti-cancer, HIV, and neuron protective properties. In this study, stem segments having an auxiliary bud were cultured in vitro on MS medium supplemented with TDZ at 0.1 mg/L for obtaining the highest number of shoots (8–9 shoots/cluster after eight weeks). The bud shoots were originated from the differentiation in the periphery of the lateral meristem. After eight weeks, the shoots cultured under the monochromatic light showed that the plant height, fresh and dry weight was higher than those grown under the fluorescent light at the same intensity of 50 µmol photon/m2/sec. Blue LED reduced the number of shoots/cluster, and respiration intensity of the inoculum compared to the red LED or fluorescent light conditions. However, after eight weeks, the total sugar and phenolic content in leaves and stems, as well as the resveratrol content of shoots under blue light, were always higher than under red LED or fluorescent light. Moreover, when samples were exposed under the one-week blue light condition at a double intensity (100 µmol photon/m2/sec), the shoot clusters growing under blue LED also had a remarkably high total phenolic content and significantly high resveratrol levels compared to the two other treatments. The roles of endogenous growth regulators in shoot clusters under different lighting conditions were also analyzed and discussed.


2018 ◽  
Vol 59 (1) ◽  
pp. 115-123 ◽  
Author(s):  
Bożena Pawłowska ◽  
Marek Żupnik ◽  
Bożena Szewczyk-Taranek ◽  
Monika Cioć

2021 ◽  
Author(s):  
◽  
Sundara Mudiyanselage Maheshini Rangika Mawalagedera

<p>Supernumerary free radicals and other reactive species can cause oxidative damage in animal cells, potentially leading to non-infectious diseases. Diets rich in low molecular weight antioxidants (LMWAs) may prevent or arrest the pathogenesis of these diseases. Leaves of Sonchus oleraceus L. may be an excellent dietary LMWA source for humans given their apparent strong antioxidant activities in vitro. However, different S. oleraceus plants vary in their antioxidant capacity. Nothing is known of possible environmental effects on antioxidant potential. Equally, the effects of cooking and gastrointestinal digestion are unknown. The goals of this research were: (i) to study the effects of plant age, locality, and abiotic stressors on antioxidant potential; (ii) to study the effects of cooking and in vitro gastrointestinal digestion on antioxidant activity and uptake in human cells; and (iii) to study extractable antioxidant activities of S. oleraceus cell suspension cultures in relation to abiotic stressors.   Antioxidant activities and levels of total phenolics, hydroxycinnamic acids and ascorbate increased as plants aged. An ecotype from Acacia Bay had a higher phenolic content and antioxidant activities than one from Oamaru; these differences were maintained across generations as well as in calli from in vitro cultures. This indicates heritability and genetic fidelity of antioxidant potential.   Chilling and salinity had variable effects on concentrations of phenolics and antioxidant activities in plants, and the combination of the two stressors was not synergistic. This indicates that these two stressors share signalling and response pathways. Stressor-induced increases in antioxidant activities of leaf extracts correlated with improved cellular antioxidant activities (CAA) inside HepG2 cells. Antioxidants were released from leaves following in vitro gastrointestinal digestion, which were then subsequently uptaken by Caco2 and HepG2 cells wherein they displayed CAAs. Thus, elevated levels of antioxidants in stressor-imposed plants provide potentially more antioxidant protection to live human cells.  Caftaric, chlorogenic and chicoric acids accounted for 92% of the phenolic compounds in S. oleraceus leaves. Of these, only chlorogenic acid was inducible by stressors, both in intact plants and in calli. In young stressor-applied plants, chlorogenic acid was enhanced to the levels achievable with plant ageing.   Boiling leaves prior to digestion did not diminish the caftaric and chlorogenic acid levels released through digestion, but chicoric acid levels were. Out of the nine phenolic compounds in leaves, only chicoric, chlorogenic and caftaric acids were released into the medium during in vitro gastrointestinal digestion. Digestion of leaves resulted in effective release of caftaric and chlorogenic acids from leaves but the levels of released chicoric acid were diminished by digestion.  This study offers insights into the factors that influence the antioxidant potential of S. oleraceus L. in vivo, in vitro, during cooking and in vitro gastrointestinal digestion. These results provide the foundation for: (1) encouraging the consumption of its fresh shoots as an antioxidant rich food; (2) further improving its antioxidant activities through manipulation of agronomy, ecotype and breeding; (3) developing its cell cultures as a commercial platform for phyto-antioxidant production aimed at formulating dietary supplements or food additives in biopharmaceutical industry.</p>


Forests ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 511
Author(s):  
Ioana M. Plesa ◽  
Mohamad Al Hassan ◽  
Sara González-Orenga ◽  
Adriana F. Sestras ◽  
Oscar Vicente ◽  
...  

European larch (Larix decidua Mill.) has been reported either as more tolerant or as more sensitive to drought than conifers with perennial leaves. Previous studies have revealed that Carpathian populations of European larch display a high genetic variability. A comparative study of the responses of these populations to drought stress at the seedling stage might allow the identification of drought tolerant genotypes and reliable drought stress biomarkers, which could be eventually used for the early detection of drought effects in larch, not only under control greenhouse conditions, but also in their natural stands. Growth responses were analyzed in larch seedlings from six Romanian Carpathian populations, submitted to one month of mild drought stress under controlled conditions. Levels of photosynthetic pigments (chlorophylls a and b, and carotenoids), osmolytes (proline and total soluble sugars), monovalent cations (Na+ and K+), and malondialdehyde (MDA) and non-enzymatic antioxidants (total phenolics and flavonoids) were compared with control treatments and between populations. Growth and the pattern of the biochemical responses were very similar in the six populations. Drought stress lead to stem length decrease in all population, whereas reduction of fresh weight of needles was significant only in one population (BVVC), and reduction of water content of needles in two populations (BVVC and GuHo). The optimal biochemical traits for an early detection of drought symptoms in this species is the increase—in most populations—of total soluble sugars, MDA, and total phenolic compounds, whereas K+ reduction was significant in all populations. Photosynthetic pigments remained unchanged, except for the Anin population where they were reduced under stress. Multivariate principal component and hierarchical clustering analyses confirmed the impact of drought in the growth and physiology of European larch, and revealed that the humidity of the substrate was positively correlated with the growth parameters and the levels of K+ in needles, and negatively correlated with the levels of MDA, total soluble sugars, total phenolic compounds, and flavonoids in needles.


2018 ◽  
Vol 46 (1) ◽  
pp. 58-64 ◽  
Author(s):  
Małgorzata MALIK ◽  
Marzena WARCHOŁ ◽  
Bożena PAWŁOWSKA

Wild roses are an important group of plants used as decorative shrubs and cut flowers. They are also a row material for pharmaceutical, cosmetic and food industries. For rose in vitro propagation, solid media are commonly used. Up till now there is a few reports confirming the beneficial effect of liquid media on Rosa shoot growth and multiplication. The aim of the study was to investigate different culture systems, temporary immersion system (TIS) (immersion frequencies of 15 min every 6, 8 and 12 h), rotary shaker (RS) and stationary liquid (SL) for propagation of R. canina and compare with solid medium culture. Shoot tips and stem explants were grown on basic Murashige and Skoog medium with 20 mg dm-3 Fe EDDHA, 1 µM BA, 1.5 µM GA3 and 3% sucrose for six weeks. Liquid cultures stimulated biomass growth. The highest biomass growth in RS cultures were observed however, RS reduced the shoot dry mass content. TIS cultures immersed every 6 and 8 h increased dry mass content. In TIS and on solid medium shoot multiplication was 1.5-2 times better than in other systems and stem explants were more efficient. Solid medium improved the content of chlorophyll a, b, a+b and carotenoids. Higher contents of photosynthetic pigments were determined in shoot tips than stem explants. TIS-derived plantlets accumulated the largest amount of phenolic compounds. As the frequency of immersion increases the concentration of these compounds were reduced. In turn, SL cultures favored the accumulation of soluble sugars.


2016 ◽  
Vol 38 (4) ◽  
Author(s):  
CÉSAR FERNANDES AQUINO ◽  
LUIZ CARLOS CHAMHUM SALOMÃO ◽  
SÔNIA MACHADO ROCHA RIBEIRO ◽  
DALMO LOPES DE SIQUEIRA ◽  
PAULO ROBERTO CECON

ABSTRACT The aim of this study was to quantify and compare the levels of carbohydrates and phenolic compounds and the antioxidant activity in the pulp and peel of 15 banana cultivars in two ripening stages. Four bunches per cultivar were harvested in the pre-climacteric stage, six fruits were used by sample unit. Fruits were analyzed in the pre-climacteric stage and after ripening. Total, reducing and non-reducing soluble sugars, starch, phenolic compounds and antioxidant activity were evaluated. Cultivar and ripening stage influenced all characteristics analyzed. Unripe pulp and peel had small percentage of sugar, but high percentage of starch, especially ‘Terrinha’ and ‘Marmelo’ cultivars. AAB and ABB cultivars presented the highest percentages of starch, when compared to AA and AAA cultivars. For the phenolic compounds, the highest content was observed in ripe peel, followed by ripe pulp and unripe peel and pulp, highlighting ‘Terrinha’ cultivar in all parts and stages evaluated. The antioxidant potential was higher in ripe peel, followed by unripe peel, ripe and unripe pulp. Fruits of Terrinha, Marmelo, Maçã, Ouro and Caru-Verde cultivars showed the highest carbohydrate contents, and phenolic compounds or antioxidant activity, justifying future actions in the expansion of planting and consumption of these fruits.


2010 ◽  
Vol 16 (5) ◽  
pp. 576-582 ◽  
Author(s):  
Marcos Vinicius Leal-Costa ◽  
Luana Beatriz dos Santos Nascimento ◽  
Nattacha dos Santos Moreira ◽  
Fernanda Reinert ◽  
Sônia Soares Costa ◽  
...  

AbstractKalanchoe pinnata (Lamarck) Persoon (Crassulaceae) (air plant, miracle leaf) is popularly used to treat gastrointestinal disorders and wounds. Recently, the species was tested to treat cutaneous leishmaniasis with successful results. This medicinal activity was associated with the phenolic fraction of the plant. Blue light induces biosynthesis of phenolic compounds and many changes in anatomical characteristics. We studied the effects of supplementary blue light on the leaf morphology of in vitro K. pinnata. Plants cultured under white light (W plants) only and white light plus blue light (WB plants) show petioles with plain-convex section, amphistomatic leaf blades with simple epidermis, homogeneous mesophyll with densely packed cells, and a single collateral vascular bundle in the midrib. W plants have longer branches, a larger number of nodes per branch, and smaller leaves, whereas WB plant leaves have a thicker upper epidermis and mesophyll. Leaf fresh weight and leaf dry weight were similar in both treatments. Phenolic idioblasts were observed in the plants supplemented with blue light, suggesting that blue light plays an important role in the biosynthesis of phenolic compounds in K. pinnata.


Sign in / Sign up

Export Citation Format

Share Document