Mechanical properties of bio-cementation materials in pre-precipitation mixing process

Author(s):  
Xiaoniu Yu ◽  
Zhe Wang ◽  
Jun Wang
2013 ◽  
Vol 25 (46) ◽  
pp. 6724-6729 ◽  
Author(s):  
Jaewon Hwang ◽  
Taeshik Yoon ◽  
Sung Hwan Jin ◽  
Jinsup Lee ◽  
Taek-Soo Kim ◽  
...  

2017 ◽  
Vol 90 (4) ◽  
pp. 611-620
Author(s):  
An Dong ◽  
Zhang Zhiyi ◽  
Jia Haixiang ◽  
Shou Jinquan ◽  
Zhang Huan ◽  
...  

ABSTRACT The influence of the structure and size of carbon black on the static mechanical and dynamic mechanical properties of filled natural rubber (NR) compounds is investigated in detail. A new process for the production of carbon black master batches with enhanced mechanical properties has been developed. The unit operations in the process are the preparation of carbon black slurry in the presence of a suitable surfactant, addition of the slurry to the fresh NR latex under stirring, coagulation of the mixture by the addition of acid, dewatering of the coagulum, and drying to obtain carbon black–incorporated NR. The competence of the new technique is established by comparing the characteristics of the carbon black–incorporated NR by the mill mixing process (control). The mechanical properties, including tensile strength, modulus, tear strength, and hardness, are superior for the vulcanization prepared by the latex-suspension coagulation techniques. The improvement shown by the vulcanization prepared by the latex-suspension coagulation techniques was attributed to the better filler dispersion evidenced from the scanning electron micrograph along with the attainment of a higher level of vulcanization.


Author(s):  
Seunghyun Baik ◽  
Byeongsoo Lim ◽  
Bumjoon Kim ◽  
Untae Sim ◽  
Seyoung Oh ◽  
...  

Carbon nanotubes have received considerable attention because of their excellent mechanical properties. In this study, carbon nanotube - copper composites have been sintered by a mechanical mixing process. The interfacial bonding between nanotubes and the copper matrix was improved by coating nanotubes with nickel. Sintered pure copper samples were used as control materials. The displacement rate of nanotube-copper composites was found to increase at 200°C whereas that of nickel-coated nanotue-copper composites significantly decreased. The incorporation of carbon nanotubes and nickel-coated carbon nanotubes in the copper matrix decreased friction coefficients and increased the time up to the onset of scuffing compared with those of pure copper specimens.


2012 ◽  
Vol 501 ◽  
pp. 274-278
Author(s):  
Guang Yi Lin ◽  
Ben Fa Gao ◽  
Chuan Sheng Wang

In order to improve the dispersion degree of carbon black and other additives, reduce consumption of energy and the temperature of discharging rubber compound, our research has been focused on preparation of rubber compound with different rubber particle size at filling coefficient of 0.6 and 0.7 in the mixer. The power consumption, the temperature of discharging rubber compound and the dispersion of carbon black were characterized in this study. The mechanical properties of the rubber compound have also been tested. The results indicate that reducing the particle size of rubber can reduce the consumption of energy and the temperature of discharging rubber compound and improve the mechanical properties, which is very important in rubber industry


2010 ◽  
Vol 19 (4) ◽  
pp. 381-392 ◽  
Author(s):  
Nguyen Quang Khuyen ◽  
Byung Sun Kim ◽  
Joon Hyung Byun ◽  
Soo Lee

Author(s):  
Weerakaset Suanpaga

The purpose of this study is to determine the appropriated mixed proportion of asphalt concrete using Polymer Reclaimed Asphalt Pavement, new aggregate and Advera (PRAP-Warm Mixed) that were mixed at warm temperature. Then the Mechanical Properties of new mixed asphalt concrete samples were tested following the standards of the Department of Highway, Thailand. In experimental design, the range of mixing temperature varied as 140°C, 145°C, 150°C, 155°C, and percentage of Advera added varied at 0.20, 0.25, 0.30 and 0.35 percent by weight of aggregate. The engineering properties of PRAP samples obtained from this study showed that the optimum mixing ratio was 0.20 percent at 140°C has a Stability value of 2530 lbs, a flow of 12 in a particle size of VMA 16.2, a strength index, 85 percent of the test results are in line with the requirements of the Department of Highways. Then using 70 percent of PRAP-warm mix with 30 percent of new material at 140°C and add 0.20 percent of Advera that is the best-mixed proportion. The normal temperature of PMA mixing is higher than 170°C, in this case using PRAP-Warm mix can reduce temperature lesser than 150°C then this mixing process can save fuel consumption. Thus this study is useful for environmental perspectives.


Materials ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4164 ◽  
Author(s):  
Hayeon Kim ◽  
Hyeongmin Son ◽  
Joonho Seo ◽  
H. K. Lee

The present study evaluated the self-healing efficiency and mechanical properties of mortar specimens incorporating a bio-carrier as a self-healing agent. The bio-carrier was produced by immobilizing ureolytic bacteria isolated from seawater in bottom ash, followed by surface coating with cement powder to prevent loss of nutrients during the mixing process. Five types of specimens were prepared with two methods of incorporating bacteria, and were water cured for 28 days. To investigate the healing ratio, the specimens with predefined cracks were treated by applying a wet–dry cycle in three different conditions, i.e., seawater, tap water, and air for 28 days. In addition, a compression test and a mercury intrusion porosimetry analysis of the specimens were performed to evaluate their physico-mechanical properties. The obtained results showed that the specimen incorporating the bio-carrier had higher compressive strength than the specimen incorporating vegetative cells. Furthermore, the highest healing ratio was observed in specimens incorporating the bio-carrier. This phenomenon could be ascribed by the enhanced bacterial viability by the bio-carrier.


2018 ◽  
Vol 276 ◽  
pp. 148-153
Author(s):  
Matěj Lédl ◽  
Lucie Galvánková ◽  
Rostislav Drochytka

After introducing SNCR in coal combustion process in power plants, the valuable by-product such as fly ash remains contaminated with amount of ammonia in form of NH4HSO4, (NH4)2SO4 respectively, which became undesirable in AAC technology because the toxic ammonia is released in the air during the mixing process. This paper deals with the effect of varying ammonia content in fly ash after selective non-catalytic reduction (SNCR) on the physical-mechanical properties of the fly ash based autoclaved aerated concrete (AAC) with the main focus on determination of the impact of the various content of ammonium ion in fly ash on the initial consistency of fresh slurry, the residual content of ammonium ion in hardened aerated matrix and also the impact on the bulk density, compressive strength and tobermorite formation after hydrothermal treatment. Seven batches of AAC, made out of fly ash with rising content of ammonium ion from 0 ppm to 250 ppm, were tested and based on the results obtained it was found out that ammonia is released during the mixing process entirely and doesn‘t remain in AAC after autoclaving, moreover it doesn‘t affect the properties of both fresh slurry (no apparent foaming effect noticed) and thermally treated samples of AAC. Formation of tobermorite wasn’t negatively affected.


2013 ◽  
Vol 812 ◽  
pp. 241-245 ◽  
Author(s):  
Fatimah A’thiyah Sabaruddin ◽  
Noorasikin Samat

Polymer nanocomposites containing polypropylene (PP) as the polymer matrix and nanofiller aluminium hydroxide (ATH) as the flame retardant filler were compounded with various loading of maleic anhydride grafted polypropylene, MAPP (0, 1, 2, 3, 5 wt %). All materials were mixed using melt mixing process and were further prepared using an injection moulding machine. The mechanical performances of the samples were characterized using tensile and impact tests. Improvements were observed for the tensile and impact properties of the PP/ATH samples after being loaded with MAPP. MAPP loading of 1 wt % was determined to be the optimum content of coupling agent addition as this loading enabled the best performance of the nanocomposite in tensile and impact tests. Different morphologies of the fracture surfaces for all samples were characterized using FESEM analysis.


2010 ◽  
Vol 24 (06n07) ◽  
pp. 805-812 ◽  
Author(s):  
A. M. TORKI ◽  
I. ŽIVKOVIĆ ◽  
V. R. RADMILOVIĆ ◽  
D. B. STOJANOVIĆ ◽  
V. J. RADOJEVIĆ ◽  
...  

This work reports the preparation of SiO 2 and TiO 2/poly (vinyl butyral) nanocomposites with enhanced dynamic mechanical properties. Silica and titania nanoparticles were introduced in the matrix as the neat powder and as colloidal sol using the melt mixing process. Composites reinforced with colloidal sol silica and titania showed higher mechanical properties than the ones reinforced with as-received particles. When sol TiO 2 particles are used, the highest increase of storage modulus of about 54% is obtained for 5 wt% loading, while for sol SiO 2, the storage modulus increases with the addition of nanosilica with the largest increase of about 99% for 7 wt% loading. In addition, nanocomposites were introduced within Kevlar/PVB composites. The addition of 5 wt% silica and titania colloidal sol lead to the remarkable increase of the storage modulus for about 98 and 65%, respectively. Largest contribution of nanoreinforcements in lowering the glass transition temperature is observed for 7 wt% loading of TiO 2 and SiO 2 colloidal sol.


Sign in / Sign up

Export Citation Format

Share Document