scholarly journals The mysterious feeding ecology of leptocephali: a unique strategy of consuming marine snow materials

2020 ◽  
Author(s):  
Katsumi Tsukamoto ◽  
Michael J. Miller

AbstractLeptocephalus larvae have transparent bodies with tubular intestines that usually lack identifiable food items when they are collected, so mystery has surrounded efforts to determine what they feed on. Artificially spawned and reared first-feeding larvae were found to be highly selective in what they would eat, but they would consume rotifers and eventually ate specially formulated diets that contained shark egg yolk. Gut content studies on wild-caught leptocephali in the Atlantic and Pacific observed marine snow-associated materials such as discarded appendicularian houses, zooplankton fecal pellets, protists, and amorphous materials, and DNA sequencing indicated that the gut contents contain materials originating from a wide range of microorganisms and food web zooplankton species that were likely consumed in marine snow. Isotopic studies found a low trophic position of leptocephali and inter-taxa and geographic signature differences. Behavioral studies with leptocephali and the characteristics and size-scaling of the teeth are also consistent with feeding on marine snow-related particles. The feeding strategy of leptocephali appears to be based on consuming types of marine snow that contain nutritious and easily assimilated carbohydrates, fatty acids, and other materials that facilitate rapid conversion to glycosaminoglycans and tissues for energy storage and growth.

2013 ◽  
Vol 9 (1) ◽  
pp. 20120826 ◽  
Author(s):  
Michael J. Miller ◽  
Yoshito Chikaraishi ◽  
Nanako O. Ogawa ◽  
Yoshiaki Yamada ◽  
Katsumi Tsukamoto ◽  
...  

What eel larvae feed on in the surface layer of the ocean has remained mysterious. Gut contents and bulk nitrogen stable isotope studies suggested that these unusual larvae, called leptocephali, feed at a low level in the oceanic food web, whereas other types of evidence have suggested that small zooplankton are eaten. In this study, we determined the nitrogen isotopic composition of amino acids of both natural larvae and laboratory-reared larvae of the Japanese eel to estimate the trophic position (TP) of leptocephali. We observed a mean TP of 2.4 for natural leptocephali, which is consistent with feeding on particulate organic matter (POM) such as marine snow and discarded appendicularian houses containing bacteria, protozoans and other biological materials. The nitrogen isotope enrichment values of the reared larvae confirm that the primary food source of natural larvae is consistent only with POM. This shows that leptocephali feed on readily available particulate material originating from various sources closely linked to ocean primary production and that leptocephali are a previously unrecognized part of oceanic POM cycling.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tsuyoshi Watanabe ◽  
Satoshi Nagai ◽  
Yoko Kawakami ◽  
Taiga Asakura ◽  
Jun Kikuchi ◽  
...  

AbstractEel larvae apparently feed on marine snow, but many aspects of their feeding ecology remain unknown. The eukaryotic 18S rRNA gene sequence compositions in the gut contents of four taxa of anguilliform eel larvae were compared with the sequence compositions of vertically sampled seawater particulate organic matter (POM) in the oligotrophic western North Pacific Ocean. Both gut contents and POM were mainly composed of dinoflagellates as well as other phytoplankton (cryptophytes and diatoms) and zooplankton (ciliophoran and copepod) sequences. Gut contents also contained cryptophyte and ciliophoran genera and a few other taxa. Dinoflagellates (family Gymnodiniaceae) may be an important food source and these phytoplankton were predominant in gut contents and POM as evidenced by DNA analysis and phytoplankton cell counting. The compositions of the gut contents were not specific to the species of eel larvae or the different sampling areas, and they were most similar to POM at the chlorophyll maximum in the upper part of the thermocline (mean depth: 112 m). Our results are consistent with eel larvae feeding on marine snow at a low trophic level, and feeding may frequently occur in the chlorophyll maximum in the western North Pacific.


2019 ◽  
Vol 31 (1) ◽  
pp. 16-22 ◽  
Author(s):  
Alison C. Cleary ◽  
Maria C. Casas ◽  
Edward G. Durbin ◽  
Jaime Gómez-Gutiérrez

AbstractThe keystone role of Antarctic krill,Euphausia superbaDana, in Southern Ocean ecosystems, means it is essential to understand the factors controlling their abundance and secondary production. One such factor that remains poorly known is the role of parasites. A recent study of krill diet using DNA analysis of gut contents provided a snapshot of the parasites present within 170E. superbaguts in a small area along the West Antarctic Peninsula. These parasites includedMetschnikowiaspp. fungi,Haptoglossasp. peronosporomycetes,LankesteriaandParalecudinaspp. apicomplexa,Stegophorussp. nematodes, andPseudocolliniaspp. ciliates. Of these parasites,Metschnikowiaspp. fungi andPseudocolliniaspp. ciliates had previously been observed inE. superba, as had other genera of apicomplexans, though notLankesteriaandParalecudina.In contrast, nematodes had previously only been observed in eggs ofE. superba, and there are no literature reports of peronosporomycetes in euphausiids.Pseudocolliniaspp., parasitoids which obligately kill their host, were the most frequently observed infection, with a prevalence of 12%. The wide range of observed parasites and the relatively high frequency of infections suggest parasites may play a more important role than previously acknowledged inE. superbaecology and population dynamics.


2016 ◽  
Vol 56 (7) ◽  
pp. 1091 ◽  
Author(s):  
Nayara T. Ferreira ◽  
Nilva K. Sakomura ◽  
Juliano César de Paula Dorigam ◽  
Edney Pereira da Silva ◽  
Robert M. Gous

There is scant information about the reproductive process in broiler breeders, with which to develop a feeding strategy that will be economically optimal for these birds. This study aimed to model the egg production of a flock of broiler breeder hens, using non-isometric equations. The number of eggs produced by 60 broiler breeder hens aged 24–60 weeks was monitored, as was the weight of these eggs and the weights of the components, yolk, albumen and shell. Oviposition sequences and the number and length of pauses between sequences were analysed. Non-isometric functions were applied to predict the weight of the egg; yolk weight was predicted from the age of the hen, while albumen and shell weights were predicted from yolk weight; and egg weight was obtained by summing the component weights. The incidence of soft-shelled and double-yolk eggs was also determined. Yolk weight (YW, g) can be described as YW = 18.03 × (1 – e–0.015 × (t – 103.4)) × e(0.001 × t), where t is the age of the bird (days). The weights of albumen (AW) and shell (SW) were based on YW predictions as follows: AW = 14.38 × YW0.375 and SW = 0.358 × (YW + AW)0.687. The rate of double-yolk egg (DY) production is described by DY = 2.28 × e(0.209 × TFE), and the rate of soft-shelled egg (SS) production by SS = 1.126 + 0.148/(1 – 0.024 × TFE) – 0.056 × TFE, as a function of time from first egg (TFE). On the basis of the results obtained, the model developed here is an accurate reflection of the changes that occur in the number of eggs produced by broiler breeders, as well as in the egg itself and in its components over the entire laying period. This model can thus be used in predicting the nutrient requirements of individual broiler breeder hens, which, when combined with simulated data from a large number of individuals, will accurately describe the laying performance of a flock of broiler breeders.


Author(s):  
Chiyuki Sassa

The feeding habits of myctophid larvae of Symbolophorus californiensis were examined in the southern transition region of the western North Pacific where the main spawning and nursery grounds of S. californiensis are formed. This species is a key component of the pelagic ecosystems of this region, and their larvae attain one of the largest sizes among myctophids. To analyse gut contents larvae, including most life history stages after yolk-sac absorption (3.7 to 22.2 mm body length (BL)), were collected in the upper 100 m layer in 1997 and 1998. Feeding incidence was higher during the day than at night (53.1–92.3% versus 0–5.6%), and daytime feeding incidence increased gradually with larval growth. Larvae fed mainly on copepods of various developmental stages. Larvae of S. californiensis showed an ontogenetic change in their diet: larvae ≤7.9 mm BL (i.e. preflexion stage) fed mainly on copepod eggs and nauplii, while the larvae ≥8 mm BL consumed mainly calanoid copepodites such as Pseudocalanus and Paracalanus spp. In the largest size-class (16–22.2 mm BL), the furcilia stage of euphausiids was also an important prey item. There was an increase in the average prey size with growth in larvae ≤11.9 mm BL, while the number of prey eaten positively correlated with growth in larvae ≥12 mm BL. The trophic niche breadth also increased with larval growth, which would ensure a wide range of available food resources for the larger size-class larvae.


2016 ◽  
Vol 76 (2) ◽  
pp. 292-299 ◽  
Author(s):  
L. H. Sipaúba-Tavares ◽  
A. M. Appoloni ◽  
J. B. K. Fernandes ◽  
R. N. Millan

Abstract The growth rate and percent survival of Betta splendens when submitted to formulated diet and live food treatments are evaluated. The three different diets were used and designated as: formulated diet (basal diet); live food diet (plankton) and mixed diet (formulated diet with plankton). The live food diet contained plankton belonging to an open pond. High mortality was reported with live food (plankton) treatment whereas higher percent survival occurred with formulated diet. Highest specific growth rate, weight gain and final weight were reported in the mixed diet treatment and were significantly different (p<0.01) from those in formulated diet and live food treatments. The gut contents of B. splendens in mixed diet and live food treatments comprised, Rotifera and Bacillariophyceae species in high percentages or rather, over 78% of total organisms. Lecane sp. was the most ingested zooplankton species by B. splendens in both treatments (mixed diet and live food), with the phytoplankton species Asterionella sp. and Melosira sp. respectively in mixed diet and in live food, respectively. Results indicated that the formulated diet influenced the water parameters dissolved oxygen, total suspended solids, total dissolved solids and pH. The live food in the open pond was not enough to improve the growth rate and percent survival of B. splendens. The growth performance of B. splendens; had the best results with mixed diet which was capable of maintaining species’s survival (82%) and development in artificial conditions, benefiting the culture management of ornamental fish.


1999 ◽  
Vol 590 ◽  
Author(s):  
DM Pickup ◽  
G Mountjoy ◽  
RJ Newport ◽  
ME Smith ◽  
GW Wallidge ◽  
...  

ABSTRACTSol-gel produced mixed oxide materials have been extensively studied using conventional, ex situ structural techniques. Because the structure of these materials is complex and dependent on preparation conditions, there is much to be gained from in situ techniques: the high brightness of synchrotron x-ray sources makes it possible to probe atomic structure on a short timescale, and hence in situ. Here we report recent results for mixed titania- (and some zirconia-) silica gels and xerogels. Titania contents were in the range 8–18 mol%, and heat treatments up to 500°C were applied. The results have been obtained from intrinsically rapid synchrotron x-ray experiments: i) time-resolved small angle scattering, using a quadrant detector, to follow the initial stages of aggregation between the sol and the gel; ii) the use of a curved image plate detector in diffraction, which allowed the simultaneous collection of data across a wide range of scattering at high count rate, to study heat treatments; and iii) x-ray absorption spectroscopy to explore the effects of ambient moisture on transition metal sites.


1968 ◽  
Vol 14 (8) ◽  
pp. 817-821 ◽  
Author(s):  
B. T. Khouw ◽  
H. D. McCurdy Jr.

The physical and nutritional requirements for growth of Hexamita inflata have been studied in axenic cultures. The flagellate was capable of growing over a wide range of temperature (5 °C to 25 °C), of hydrogen ion concentration (pH 4.5 to 8.5), and of salinity (3 to 28‰); and required a reducing or anaerobic environment. The requirement of an egg-yolk suspension for growth was partially satisfied by unsaturated fatty acids. Attempts to replace the peptone by mixtures of amino acids were not successful. A simple medium containing a vitamin mixture, linoleic acid, glucose, cysteine, peptone, and salt has been formulated.


2004 ◽  
Vol 840 ◽  
Author(s):  
Lixin Fan ◽  
Ian McNulty ◽  
David Paterson ◽  
Michael M.J. Treacy ◽  
J. Murray Gibson

ABSTRACTMany x-ray techniques exist to probe long- and short-range order in matter, in real space by imaging and in reciprocal space by diffraction and scattering. However, measuring mediumrange order (MRO) in disordered materials is a long-standing problem. Based on fluctuation electron microscopy, which was applied successfully to the understanding of MRO in amorphous materials, we have developed fluctuation x-ray microscopy (FXM). This novel approach offers quantitative insight into medium-range correlations in materials at nanometer and larger length scales. It examines spatially resolved fluctuations in the intensity of a series of x-ray speckle patterns. The speckle variance depends on higher order correlations that are more sensitive to MRO. Systematically measuring the speckle variance as function of the momentum transfer and x-ray illumination size produces a fluctuation map that contains information about the degree of MRO and the correlation length. This approach can be used for the exploration of MRO and subtle spatial structural changes in a wide range of disordered materials from soft condensed matter to nanowire arrays, semiconductor quantum dot arrays and magnetic materials. It will also help us to understand the mechanisms of order-disorder transitions and may lead to control of ordering, which is important in developing ordered structures tailored for particular applications. A theory for FXM and preliminary experimental results from polystyrene latex spheres are discussed in this paper.


Sign in / Sign up

Export Citation Format

Share Document