scholarly journals Perinatal Asphyxia Leads to PARP-1 Overactivity, p65 Translocation, IL-1β and TNF-α Overexpression, and Apoptotic-Like Cell Death in Mesencephalon of Neonatal Rats: Prevention by Systemic Neonatal Nicotinamide Administration

2015 ◽  
Vol 27 (4) ◽  
pp. 453-465 ◽  
Author(s):  
T. Neira-Peña ◽  
E. Rojas-Mancilla ◽  
V. Munoz-Vio ◽  
R. Perez ◽  
M. Gutierrez-Hernandez ◽  
...  
RSC Advances ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 4454-4464
Author(s):  
Nour E. A. Abd El-sattar ◽  
Eman H. K. Badawy ◽  
Eman Z. Elrazaz ◽  
Nasser S. M. Ismail

PARP-1 are involved in DNA repair damage and so PARP-1 inhibitors have been used as potentiators in combination with DNA damaging cytotoxic agents to compromise the cancer cell DNA repair mechanism, resulting in genomic dysfunction and cell death.


2021 ◽  
pp. 019262332110077
Author(s):  
Catherine A. Picut ◽  
Odete R. Mendes ◽  
David S. Weil ◽  
Sarah Davis ◽  
Cynthia Swanson

Administration of pediatric anesthetics with N-methyl D-aspartate (NMDA)-receptor antagonist and/or γ-aminobutyric acid (GABA) agonist activities may result in neuronal degeneration and/or neuronal cell death in neonatal rats. Evaluating pediatric drug candidates for this potential neurotoxicity is often part of overall preclinical new drug development strategy. This specialized assessment may require dosing neonatal rats at postnatal day 7 at the peak of the brain growth spurt and evaluating brain tissue 24 to 48 hours following dosing. The need to identify methods to aid in the accurate and reproducible detection of lesions associated with this type of neurotoxic profile is paramount for meeting the changing needs of neuropathology assessment and addressing emerging challenges in the neuroscience field. We document the use of Fluoro-Jade B (FJB) staining, to be used in conjunction with standard hematoxylin and eosin staining, to detect acute neurodegeneration and neuronal cell death that can be caused by some NMDA-receptor antagonists and/or GABA agonists in the neonatal rat brain. The FJB staining is simple, specific, and sensitive and can be performed on brain specimens from the same cohort of animals utilized for standard neurotoxicity assessment, thus satisfying animal welfare recommendations with no effect on achievement of scientific and regulatory goals.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zheng Zheng ◽  
Yan Chen ◽  
Yinzhou Wang ◽  
Yongkun Li ◽  
Qiong Cheng

AbstractCollagen-type I alpha 1 chain (COL1A1) and COL1A2 are abnormally expressed in intracranial aneurysm (IA), but their mechanism of action remains unclear. This study was performed to investigate the mechanism of COL1A1 and COL1A2 affecting the occurrence and rupture of IA. Quantitative real-time polymerase chain reaction was used to measure the expression of hsa-miR-513b-5p, COL1A1, COL1A2, TNF-α, IL-6, MMP2, MMP3, MMP9 and TIMP4 in patients with ruptured IA (RA) (n = 100), patients with un-ruptured IA (UA) (n = 100), and controls (n = 100). Then, human vascular smooth muscle cells (HASMCs) were cultured, and dual luciferase reporter assay was performed to analyse the targeting relationship between miR-513b-5p and COL1A1 or COL1A2. The effects of the miR-513b-5p mimic and inhibitor on the proliferation, apoptosis, and death of HASMC and the RIP1-RIP3-MLKL and matrix metalloproteinase pathways were also explored. The effect of silencing and over-expression of COL1A1 and COL1A2 on the role of miR-513b-5p were also evaluated. Finally, the effects of TNF-α on miR-513b-5p targeting COL1A1 and COL1A2 were tested. Compared with those in the control group, the serum mRNA levels of miR-513b-5p, IL-6 and TIMP4 were significantly decreased in the RA and UA groups, but COL1A1, COL1A2, TNF-α, IL-1β, MMP2, MMP3 and MMP9 were significantly increased (p < 0.05). Compared with those in the UA group, the expression of COL1A1, COL1A2, TNF-α, IL-1β and MMP9 was significantly up-regulated in the RA group (p < 0.05). Results from the luciferase reporter assay showed that COL1A1 and COL1A were the direct targets of miR-513b-5p. Further studies demonstrated that miR-513b-5p targeted COL1A1/2 to regulate the RIP1-RIP3-MLKL and MMP pathways, thereby enhancing cell death and apoptosis. Over-expression of COL1A1 or COL1A2, rather than silencing COL1A1/2, could improve the inhibitory effect of miR-513b-5p on cell activity by regulating the RIP1-RIP3-MLKL and MMP pathways. Furthermore, over-expression of miR-513b-5p and/or silencing COL1A1/2 inhibited the TNF-α-induced cell proliferation and enhanced the TNF-α-induced cell death and apoptosis. The mechanism may be related to the inhibition of collagen I and TIMP4 expression and promotion of the expression of RIP1, p-RIP1, p-RIP3, p-MLKL, MMP2 and MMP9. MiR-513b-5p targeted the inhibition of COL1A1/2 expression and affected HASMC viability and extracellular mechanism remodelling by regulating the RIP1-RIP3-MLKL and MMP pathways. This process might be involved in the formation and rupture of IA.


Author(s):  
Hongli Zhou ◽  
Minyu Zhou ◽  
Yue Hu ◽  
Yanin Limpanon ◽  
Yubin Ma ◽  
...  

AbstractAngiostrongylus cantonensis (AC) can cause severe eosinophilic meningitis or encephalitis in non-permissive hosts accompanied by apoptosis and necroptosis of brain cells. However, the explicit underlying molecular basis of apoptosis and necroptosis upon AC infection has not yet been elucidated. To determine the specific pathways of apoptosis and necroptosis upon AC infection, gene set enrichment analysis (GSEA) and protein–protein interaction (PPI) analysis for gene expression microarray (accession number: GSE159486) of mouse brain infected by AC revealed that TNF-α likely played a central role in the apoptosis and necroptosis in the context of AC infection, which was further confirmed via an in vivo rescue assay after treating with TNF-α inhibitor. The signalling axes involved in apoptosis and necroptosis were investigated via immunoprecipitation and immunoblotting. Immunofluorescence was used to identify the specific cells that underwent apoptosis or necroptosis. The results showed that TNF-α induced apoptosis of astrocytes through the RIP1/FADD/Caspase-8 axis and induced necroptosis of neurons by the RIP3/MLKL signalling pathway. In addition, in vitro assay revealed that TNF-α secretion by microglia increased upon LSA stimulation and caused necroptosis of neurons. The present study provided the first evidence that TNF-α was secreted by microglia stimulated by AC infection, which caused cell death via parallel pathways of astrocyte apoptosis (mediated by the RIP1/FADD/caspase-8 axis) and neuron necroptosis (driven by the RIP3/MLKL complex). Our research comprehensively elucidated the mechanism of cell death after AC infection and provided new insight into targeting TNF-α signalling as a therapeutic strategy for CNS injury.


2021 ◽  
Vol 22 (6) ◽  
pp. 3275
Author(s):  
Andrea Tapia-Bustos ◽  
Carolyne Lespay-Rebolledo ◽  
Valentina Vío ◽  
Ronald Pérez-Lobos ◽  
Emmanuel Casanova-Ortiz ◽  
...  

The effect of perinatal asphyxia (PA) on oligodendrocyte (OL), neuroinflammation, and cell viability was evaluated in telencephalon of rats at postnatal day (P)1, 7, and 14, a period characterized by a spur of neuronal networking, evaluating the effect of mesenchymal stem cell (MSCs)-treatment. The issue was investigated with a rat model of global PA, mimicking a clinical risk occurring under labor. PA was induced by immersing fetus-containing uterine horns into a water bath for 21 min (AS), using sibling-caesarean-delivered fetuses (CS) as controls. Two hours after delivery, AS and CS neonates were injected with either 5 μL of vehicle (10% plasma) or 5 × 104 MSCs into the lateral ventricle. Samples were assayed for myelin-basic protein (MBP) levels; Olig-1/Olig-2 transcriptional factors; Gglial phenotype; neuroinflammation, and delayed cell death. The main effects were observed at P7, including: (i) A decrease of MBP-immunoreactivity in external capsule, corpus callosum, cingulum, but not in fimbriae of hippocampus; (ii) an increase of Olig-1-mRNA levels; (iii) an increase of IL-6-mRNA, but not in protein levels; (iv) an increase in cell death, including OLs; and (v) MSCs treatment prevented the effect of PA on myelination, OLs number, and cell death. The present findings show that PA induces regional- and developmental-dependent changes on myelination and OLs maturation. Neonatal MSCs treatment improves survival of mature OLs and myelination in telencephalic white matter.


2020 ◽  
Vol 2020 ◽  
pp. 1-4
Author(s):  
Roberto Castiglione ◽  
Aldo E. Calogero ◽  
Enzo Vicari ◽  
Giovanna Calabrini ◽  
Anna Cosentino ◽  
...  

Pancreatic cancer is a most frequent cancer in Europe, and the majority of cases of cancer of the pancreas are diagnosed above the age of 65. Radical surgery is the first curative treatment of pancreatic cancer, and alternative or combined therapeutic options, in particular, consist of adjuvant or neoadjuvant chemotherapy, with or without radiotherapy. Many factors, including diet and genetics, have been implicated in the development of cancer of the pancreas. Poly (ADP-ribose) polymerase 1 (PARP-1) protein is required for translocation of the apoptosis-inducing factor (AIF) from the mitochondria to the nucleus. It is involved in programmed cell death processes. Different PARP-1 gene expression proteins have been observed in various tumors such as lung, ovarian, endometrial, skin, and glioblastoma. We evaluated the expression of PARP-1 protein in pancreatic adenocarcinoma and normal pancreas tissues by immunohistochemistry. Protein PARP-1 in the nucleus was found in all samples (normal pancreas and pancreatic adenocarcinoma tissues). No cytoplasmic staining was observed in any sample. PARP-1-positive cells resulted higher in the normal pancreas compared with the pancreas with adenocarcinoma. PARP-1 overexpression in prostate cancer tissue compared with normal prostate suggests a greater activity of PARP-1 in these tumors. These findings suggest that PARP-1 expression in prostate cancer is an attempt to trigger apoptosis in this type of tumor, similarl to that reported in other cancers. This finding suggests that PARP-1-mediated cell death pathways are inhibited in this cancer.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Lama Tarayrah-Ibraheim ◽  
Elital Chass Maurice ◽  
Guy Hadary ◽  
Sharon Ben-Hur ◽  
Alina Kolpakova ◽  
...  

AbstractDuring Drosophila embryonic development, cell death eliminates 30% of the primordial germ cells (PGCs). Inhibiting apoptosis does not prevent PGC death, suggesting a divergence from the conventional apoptotic program. Here, we demonstrate that PGCs normally activate an intrinsic alternative cell death (ACD) pathway mediated by DNase II release from lysosomes, leading to nuclear translocation and subsequent DNA double-strand breaks (DSBs). DSBs activate the DNA damage-sensing enzyme, Poly(ADP-ribose) (PAR) polymerase-1 (PARP-1) and the ATR/Chk1 branch of the DNA damage response. PARP-1 and DNase II engage in a positive feedback amplification loop mediated by the release of PAR polymers from the nucleus and the nuclear accumulation of DNase II in an AIF- and CypA-dependent manner, ultimately resulting in PGC death. Given the anatomical and molecular similarities with an ACD pathway called parthanatos, these findings reveal a parthanatos-like cell death pathway active during Drosophila development.


Toxins ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 12
Author(s):  
Kohei Ogura ◽  
Kinnosuke Yahiro ◽  
Joel Moss

Pathogenic microorganisms produce various virulence factors, e.g., enzymes, cytotoxins, effectors, which trigger development of pathologies in infectious diseases. Cholera toxin (CT) produced by O1 and O139 serotypes of Vibrio cholerae (V. cholerae) is a major cytotoxin causing severe diarrhea. Cholix cytotoxin (Cholix) was identified as a novel eukaryotic elongation factor 2 (eEF2) adenosine-diphosphate (ADP)-ribosyltransferase produced mainly in non-O1/non-O139 V. cholerae. The function and role of Cholix in infectious disease caused by V. cholerae remain unknown. The crystal structure of Cholix is similar to Pseudomonas exotoxin A (PEA) which is composed of an N-terminal receptor-recognition domain and a C-terminal ADP-ribosyltransferase domain. The endocytosed Cholix catalyzes ADP-ribosylation of eEF2 in host cells and inhibits protein synthesis, resulting in cell death. In a mouse model, Cholix caused lethality with severe liver damage. In this review, we describe the mechanism underlying Cholix-induced cytotoxicity. Cholix-induced apoptosis was regulated by mitogen-activated protein kinase (MAPK) and protein kinase C (PKC) signaling pathways, which dramatically enhanced tumor necrosis factor-α (TNF-α) production in human liver, as well as the amount of epithelial-like HepG2 cancer cells. In contrast, Cholix induced apoptosis in hepatocytes through a mitochondrial-dependent pathway, which was not stimulated by TNF-α. These findings suggest that sensitivity to Cholix depends on the target cell. A substantial amount of information on PEA is provided in order to compare/contrast this well-characterized mono-ADP-ribosyltransferase (mART) with Cholix.


2005 ◽  
Vol 288 (2) ◽  
pp. F387-F398 ◽  
Author(s):  
Jianfeng Zheng ◽  
Kishor Devalaraja-Narashimha ◽  
Kurinji Singaravelu ◽  
Babu J. Padanilam

Increased generation of reactive oxygen species (ROS) and the subsequent DNA damage and excessive activation of poly(ADP-ribose) polymerase-1 (PARP-1) have been implicated in the pathogenesis of ischemic injury. We previously demonstrated that pharmacological inhibition of PARP protects against ischemic renal injury (IRI) in rats (Martin DR, Lewington AJ, Hammerman MR, and Padanilam BJ. Am J Physiol Regul Integr Comp Physiol 279: R1834–R1840, 2000). To further define the role of PARP-1 in IRI, we tested whether genetic ablation of PARP-1 attenuates tissue injury after renal ischemia. Twenty-four hours after reperfusion following 37 min of bilateral renal pedicle occlusion, the effects of the injury on renal functions in PARP−/− and PARP+/+ mice were assessed by determining glomerular filtration rate (GFR) and the plasma levels of creatinine. The levels of plasma creatinine were decreased and GFR was augmented in PARP−/− mice. Morphological evaluation of the kidney tissues showed that the extent of damage due to the injury in PARP−/− mice was less compared with their wild-type counterparts. The levels of ROS and DNA damage were comparable in the injured kidneys of PARP+/+ and PARP−/− mice. PARP activity was induced in ischemic kidneys of PARP+/+ mice at 6–24 h postinjury. At 6, 12, and 24 h after injury, ATP levels in the PARP+/+ mice kidney declined to 28, 26, and 43%, respectively, whereas it was preserved close to normal levels in PARP−/− mice. The inflammatory cascade was attenuated in PARP−/− mice as evidenced by decreased neutrophil infiltration and attenuated expression of inflammatory molecules such as TNF-α, IL-1β, and intercellular adhesion molecule-1. At 12 h postinjury, no apoptotic cell death was observed in PARP−/− mice kidneys. However, by 24 h postinjury, a comparable number of cells underwent apoptosis in both PARP−/− and PARP+/+ mice kidneys. Thus activation of PARP post-IRI contributes to cell death most likely by ATP depletion and augmentation of the inflammatory cascade in the mouse model. PARP ablation preserved ATP levels, renal functions, and attenuated inflammatory response in the setting of IRI in the mouse model. PARP inhibition may have clinical efficacy in preventing the progression of acute renal failure complications.


Sign in / Sign up

Export Citation Format

Share Document