Spatial distribution of radon concentrations in Balakot-Bagh (B–B) Fault Line and adjoining areas, Lesser Himalayas, North Pakistan

2021 ◽  
Vol 80 (7) ◽  
Author(s):  
Fayaz Khan ◽  
Salman Ahmed Khattak ◽  
Zafar Wazir ◽  
Muhammad Waqas
2021 ◽  
Author(s):  
Fayaz Khan ◽  
Salman khattak ◽  
zafar wazir ◽  
Zaheen Ullah ◽  
Ikhtisham Mehmood ◽  
...  

Abstract The current study was carried out near and surrounding fault line areas of Balakot-Bagh (B-B). The study aimed to find radon concentration levels in drinking water sources near and away from the fault line. The comparison was carried out for the radon level in those samples taken from the area near with those taken away from the fault line. Also, to evaluate health hazard from these drinking water to the people of the area. This area had received an earthquake of magnitude 7.6 in 2005. An active technique, RAD-7, based on alpha spectroscopy was used. The study period for the current study was three months, from 16th May to 15th August 2020. Radon concentrations were found higher in bore water with the mean value of 20.6 BqL− 1. These were 19.5 BqL− 1 and 9.3 BqL− 1 in spring and surface water, respectively. The mean value in all type of sources in the study area was 16.5 BqL− 1 which is higher than the maximum contaminated level of 11.1 BqL− 1 recommended by the U.S. The calculated doses from the radon levels were 0.0532 mSv, 0.0562 mSv and 0.0254 mSv and 0.0449 mSv, respectively.


1994 ◽  
Vol 66 (1) ◽  
pp. 43-49 ◽  
Author(s):  
Masahiro Doi ◽  
Kenzo Fujimoto ◽  
Sadayoshi Kobayashi ◽  
Hidenori Yonehara

2017 ◽  
Vol 43 (4) ◽  
pp. 1726 ◽  
Author(s):  
K. Katsanou ◽  
K. Stratikopoulos ◽  
E. Zagana ◽  
N. Lambrakis

In the present study the relationship between Rn and hydrochemical parameters in groundwater samples with the intense tectonics that prevail in the broader region of Aigion were investigated. Radon concentrations were measured in water samples collected from the unconfined aquifer, hosted in Plio-Pleistocene deposits, along the major faults of the research area. The spatial distribution of radon concentrations revealed the existence of three distinct zones along Aigion, Pyrgaki and Helike faults, respectively. The first two zones are characterized by high radon concentrations, whereas the third by low radon concentrations. It is also shown that 222Rn and CO2 concentrations display similar spatial distribution suggesting a common origin for these two gases, with CO2 being the major carrier gas for radon in deep fluids. The deformation and fragmentation of rocks along the fault zones enables the circulation of those fluids resulting in elevated radon concentrations in groundwater. However, other factors, such as the mineralogical composition of the sediments along the fault planes may restrict this process. The distribution of radon along the fault zones suggests that radon measurements can be used as a tool for the detailed mapping of active faults and if combined with seismic data even as a tool for study earthquake prediction.


Geografie ◽  
2000 ◽  
Vol 105 (4) ◽  
pp. 347-360
Author(s):  
Martin Brzák

Geological maps, with the exception of the newest ones, present this part of the Třebíč Massif in the studied area incorrectly as a part of the Moldanubicum. Conspicuous Neogene tectonic forms (e. g. fault-line valleys, fault-angle valleys) were discovered in the SE marginal part of the massif. Relations between the Tertiary and the older (mainly Variscan) tectonics were studied. Regularity of spatial distribution of the most frequent durbachite forms, as low exfoliation domes, was founded.


Author(s):  
L. D. Jackel

Most production electron beam lithography systems can pattern minimum features a few tenths of a micron across. Linewidth in these systems is usually limited by the quality of the exposing beam and by electron scattering in the resist and substrate. By using a smaller spot along with exposure techniques that minimize scattering and its effects, laboratory e-beam lithography systems can now make features hundredths of a micron wide on standard substrate material. This talk will outline sane of these high- resolution e-beam lithography techniques.We first consider parameters of the exposure process that limit resolution in organic resists. For concreteness suppose that we have a “positive” resist in which exposing electrons break bonds in the resist molecules thus increasing the exposed resist's solubility in a developer. Ihe attainable resolution is obviously limited by the overall width of the exposing beam, but the spatial distribution of the beam intensity, the beam “profile” , also contributes to the resolution. Depending on the local electron dose, more or less resist bonds are broken resulting in slower or faster dissolution in the developer.


Author(s):  
Jayesh Bellare

Seeing is believing, but only after the sample preparation technique has received a systematic study and a full record is made of the treatment the sample gets.For microstructured liquids and suspensions, fast-freeze thermal fixation and cold-stage microscopy is perhaps the least artifact-laden technique. In the double-film specimen preparation technique, a layer of liquid sample is trapped between 100- and 400-mesh polymer (polyimide, PI) coated grids. Blotting against filter paper drains excess liquid and provides a thin specimen, which is fast-frozen by plunging into liquid nitrogen. This frozen sandwich (Fig. 1) is mounted in a cooling holder and viewed in TEM.Though extremely promising for visualization of liquid microstructures, this double-film technique suffers from a) ireproducibility and nonuniformity of sample thickness, b) low yield of imageable grid squares and c) nonuniform spatial distribution of particulates, which results in fewer being imaged.


Author(s):  
Auclair Gilles ◽  
Benoit Danièle

During these last 10 years, high performance correction procedures have been developed for classical EPMA, and it is nowadays possible to obtain accurate quantitative analysis even for soft X-ray radiations. It is also possible to perform EPMA by adapting this accurate quantitative procedures to unusual applications such as the measurement of the segregation on wide areas in as-cast and sheet steel products.The main objection for analysis of segregation in steel by means of a line-scan mode is that it requires a very heavy sampling plan to make sure that the most significant points are analyzed. Moreover only local chemical information is obtained whereas mechanical properties are also dependant on the volume fraction and the spatial distribution of highly segregated zones. For these reasons we have chosen to systematically acquire X-ray calibrated mappings which give pictures similar to optical micrographs. Although mapping requires lengthy acquisition time there is a corresponding increase in the information given by image anlysis.


Author(s):  
Gary Bassell ◽  
Robert H. Singer

We have been investigating the spatial distribution of nucleic acids intracellularly using in situ hybridization. The use of non-isotopic nucleotide analogs incorporated into the DNA probe allows the detection of the probe at its site of hybridization within the cell. This approach therefore is compatible with the high resolution available by electron microscopy. Biotinated or digoxigenated probe can be detected by antibodies conjugated to colloidal gold. Because mRNA serves as a template for the probe fragments, the colloidal gold particles are detected as arrays which allow it to be unequivocally distinguished from background.


Sign in / Sign up

Export Citation Format

Share Document