scholarly journals Starch accumulation, activities of key enzyme and gene expression in starch synthesis of wheat endosperm with different starch contents

2011 ◽  
Vol 51 (3) ◽  
pp. 419-429 ◽  
Author(s):  
Zibu Wang ◽  
Weihua Li ◽  
Juncang Qi ◽  
Peichun Shi ◽  
Yongan Yin
2009 ◽  
Vol 2009 ◽  
pp. 1-23 ◽  
Author(s):  
Boryana S. Stamova ◽  
Debbie Laudencia-Chingcuanco ◽  
Diane M. Beckles

The expression of genes involved in starch synthesis in wheat was analyzed together with the accumulation profiles of soluble sugars, starch, protein, and starch granule distribution in developing caryopses obtained from the same biological materials used for profiling of gene expression using DNA microarrays. Multiple expression patterns were detected for the different starch biosynthetic gene isoforms, suggesting their relative importance through caryopsis development. Members of the ADP-glucose pyrophosphorylase, starch synthase, starch branching enzyme, and sucrose synthase gene families showed different expression profiles; expression of some members of these gene families coincided with a period of high accumulation of starch while others did not. A biphasic pattern was observed in the rates of starch and protein accumulation which paralleled changes in global gene expression. Metabolic and regulatory genes that show a pattern of expression similar to starch accumulation and granule size distribution were identified, suggesting their coinvolvement in these biological processes.


2022 ◽  
Vol 52 (4) ◽  
Author(s):  
Wang Su ◽  
Guangji Ye ◽  
Yun Zhou ◽  
Jian Wang

ABSTRACT: Biosynthesis is the only source of potato starch which is an important raw material for food processing, modified starch and biomass energy. However, it is not clear about the evolution of starch synthesis with tuber development in potato. The present study evaluated the differences of starch synthesis and gelatinization properties of potato tubers with different starch content. Relative to cultivars of medium and low starch content, cultivars of high starch content showed significantly higher SBEII gene expression, AGPase and SSS enzyme activity, and total starch content after middle stage of starch accumulation, and had smaller average starch granule size during whole process of tuber development, and had higher pasting temperature before late stages of tuber growth, and had lower pasting temperature after middle stage of starch accumulation. Path analysis showed that, after middle stage of starch accumulation, effects on starch gelatinization of cultivars with high, medium and low starch content represented starch synthesis enzyme activity > starch accumulation > starch granule distribution > starch synthesis enzyme gene expression, starch synthesis enzyme gene expression > starch synthesis enzyme activity > starch accumulation > starch granule distribution, starch synthesis enzyme gene expression > starch granule distribution > starch synthesis enzyme activity > starch accumulation, respectively. In the study, phases existed in the starch biosynthesis of potato tuber, and the starch quality and its formation process were different among varieties with different starch content. The findings might contribute to starch application and potato industries.


2018 ◽  
Vol 10 (1) ◽  
pp. 34-39
Author(s):  
Ting Wang ◽  
Xiang-rong Tian ◽  
Xiao-yu Wu ◽  
Zhun Luo ◽  
Gui Li ◽  
...  

2007 ◽  
Vol 6 (7) ◽  
pp. 808-815 ◽  
Author(s):  
Hai-yan ZHANG ◽  
Shu-ting DONG ◽  
Rong-qi GAO ◽  
Qing-quan SUN

2013 ◽  
Vol 39 (10) ◽  
pp. 1856
Author(s):  
Jiang-Ping REN ◽  
Ya-Ying WANG ◽  
Xin-Guo WANG ◽  
Na WANG ◽  
Xin CHEN ◽  
...  

Botany ◽  
2013 ◽  
Vol 91 (10) ◽  
pp. 722-730 ◽  
Author(s):  
Helen H. Tai ◽  
Claudia Goyer ◽  
Agnes M. Murphy

MYB and bHLH are large transcription factor families with largely uncharacterized biological functions. The patterns of expression of 42 MYB and 58 bHLH transcription factor genes were examined in potato clones that were demonstrated to have variation in anthocyanin intensity and common scab resistance to assess their possible involvement in regulating these traits. The control of expression of biosynthetic enzymes in regulation of anthocyanin intensity was also evaluated. The dihydroflavonol 4-reductase (DFR) gene, a key enzyme in the pathway, had the highest correlation with gene expression and anthocyanin intensity (quantified as levels of anthocyanidins). Expression of five uncharacterized MYB and three bHLH genes was also highly correlated with anthocyanin intensity, suggesting that they could be regulators of biosynthetic enzyme gene expression. The same potato clones were also demonstrated to have variation in resistance to Streptomyces scabiei, the causal pathogen of common scab in potato. Correlation analysis was used to show that anthocyanin intensity was not associated with common scab resistance. However, common scab resistance was correlated with expression of another two MYB and three bHLH genes, indicating that they might be involved in the regulation of the defense response of potato against the common scab pathogen.


1994 ◽  
Vol 21 (6) ◽  
pp. 829 ◽  
Author(s):  
GW Singletary ◽  
R Banisadr ◽  
PL Keeling

Heat stress during maize seed development can interfere with endosperm starch biosynthesis and reduce seed size, an important component of yield. Our objectives were to evaluate the direct influence of temperature during grain filling on kernel growth, carbohydrate accumulation, and corresponding endosperm metabolism. Kernels of maize were grown in vitro at 25�C until 15 or 16 days after pollination and then subjected to various temperatures for the remainder of their development. Mature kernel dry weight declined 45% in a linear fashion between 22 and 36�C. The rate of starch accumulation reached a maximum at approximately 32�C, and when measured at frequent intervals, declined only slightly with further temperature increase to 35�C. Reduced seed size resulted from an abbreviated duration of starch-related metabolism, which did not appear to be limited by endogenous sugars. Instead, a survey of 12 enzymes of sugar and starch metabolism indicated that ADP glucose pyrophosphorylase and soluble starch synthase were unique in displaying developmental peaks of activity which were compressed both in amount and time, similar to the effect of temperature on starch accumulation. We conclude that decreased starch synthesis in heat-stressed maize kernels results from a premature decline in the activity of these enzymes.


2020 ◽  
Vol 117 (52) ◽  
pp. 33177-33185
Author(s):  
Camila Ribeiro ◽  
Tracie A. Hennen-Bierwagen ◽  
Alan M. Myers ◽  
Kenneth Cline ◽  
A. Mark Settles

Endosperm starch synthesis is a primary determinant of grain yield and is sensitive to high-temperature stress. The maize chloroplast-localized 6-phosphogluconate dehydrogenase (6PGDH), PGD3, is critical for endosperm starch accumulation. Maize also has two cytosolic isozymes, PGD1 and PGD2, that are not required for kernel development. We found that cytosolic PGD1 and PGD2 isozymes have heat-stable activity, while amyloplast-localized PGD3 activity is labile under heat stress conditions. We targeted heat-stable 6PGDH to endosperm amyloplasts by fusing the Waxy1 chloroplast targeting the peptide coding sequence to the Pgd1 and Pgd2 open reading frames (ORFs). These WPGD1 and WPGD2 fusion proteins import into isolated chloroplasts, demonstrating a functional targeting sequence. Transgenic maize plants expressing WPGD1 and WPGD2 with an endosperm-specific promoter increased 6PGDH activity with enhanced heat stability in vitro. WPGD1 and WPGD2 transgenes complement the pgd3-defective kernel phenotype, indicating the fusion proteins are targeted to the amyloplast. In the field, the WPGD1 and WPGD2 transgenes can mitigate grain yield losses in high–nighttime-temperature conditions by increasing kernel number. These results provide insight into the subcellular distribution of metabolic activities in the endosperm and suggest the amyloplast pentose phosphate pathway is a heat-sensitive step in maize kernel metabolism that contributes to yield loss during heat stress.


2019 ◽  
Vol 116 (43) ◽  
pp. 21925-21935 ◽  
Author(s):  
Yi-Shih Chen ◽  
Tuan-Hua David Ho ◽  
Lihong Liu ◽  
Ding Hua Lee ◽  
Chun-Hua Lee ◽  
...  

Autotrophic plants have evolved distinctive mechanisms for maintaining a range of homeostatic states for sugars. The on/off switch of reversible gene expression by sugar starvation/provision represents one of the major mechanisms by which sugar levels are maintained, but the details remain unclear. α-Amylase (αAmy) is the key enzyme for hydrolyzing starch into sugars for plant growth, and it is induced by sugar starvation and repressed by sugar provision. αAmy can also be induced by various other stresses, but the physiological significance is unclear. Here, we reveal that the on/off switch of αAmy expression is regulated by 2 MYB transcription factors competing for the same promoter element. MYBS1 promotes αAmy expression under sugar starvation, whereas MYBS2 represses it. Sugar starvation promotes nuclear import of MYBS1 and nuclear export of MYBS2, whereas sugar provision has the opposite effects. Phosphorylation of MYBS2 at distinct serine residues plays important roles in regulating its sugar-dependent nucleocytoplasmic shuttling and maintenance in cytoplasm by 14-3-3 proteins. Moreover, dehydration, heat, and osmotic stress repress MYBS2 expression, thereby inducing αAmy3. Importantly, activation of αAmy3 and suppression of MYBS2 enhances plant growth, stress tolerance, and total grain weight per plant in rice. Our findings reveal insights into a unique regulatory mechanism for an on/off switch of reversible gene expression in maintaining sugar homeostatic states, which tightly regulates plant growth and development, and also highlight MYBS2 and αAmy3 as potential targets for crop improvement.


2006 ◽  
Vol 76 (3) ◽  
pp. 138-146
Author(s):  
Yukari Egashira ◽  
Makiko Sato ◽  
Mayuki Sato ◽  
Ryoko Sugawara ◽  
Atsushi Tanabe ◽  
...  

Hepatic α-amino-β-carboxymuconate-e-semialdehyde decarboxylase (ACMSD) [EC4.1.1.45] plays a key role in regulating NAD biosynthesis from tryptophan. The aim of this study was to evaluate the ACMSD mRNA expression after pyrazinamide or peroxisome proliferators ingestion. When rats were fed a control (pyrazinamide- and clofibrate-free) diet, 1% pyrazinamide- or 0.24% clofibrate-containing diets for 8 days, hepatic ACMSD activity and mRNA in rats consuming the clofibrate-containing diet was strongly suppressed, as compared with those fed the control and pyrazinamide diet. Pyrazinamide suppressed liver and kidney ACMSD activities, but did not affect ACMSD mRNA. Blood NAD was increased in the clofibrate and pyrazinamide groups. Shifting from the control diet to a clofibrate diet suppressed ACMSD mRNA strongly at day 1 and continued through day 4. However ACMSD activity decreased gradually. In rats fed with several kinds of peroxisome-proliferator-containing diets such as phthalate ester, bezafibrate, Wy-14,643, 2-(-4-chlorophenoxy) propionic acid, or dehydroisoandrosterone for 8 days, hepatic ACMSD mRNA was drastically decreased by all the peroxisome proliferators. These results suggest that the transcription level of hepatic ACMSD is modulated by peroxisome proliferators, and the fluctuation of the hepatic ACMSD mRNA expression was followed by that of the ACMSD activity. However, pyrazinamide does not affect the transcription level of hepatic ACMSD.


Sign in / Sign up

Export Citation Format

Share Document