Utilization of Elastic Deformation on Cu–Ag Nanoscale Particles Mixed in Hydrogen Oxide with Unique Features of Heat Generation/Absorption: Closed Form Outcomes

2019 ◽  
Vol 44 (6) ◽  
pp. 5949-5960 ◽  
Author(s):  
Bilal Ahmad ◽  
Z. Iqbal ◽  
E. N. Maraj ◽  
S. Ijaz
Author(s):  
K. Farhang ◽  
A. Elhomani

When two rough surfaces are in sliding contact an asperity on a surface would experience intermittent temperature flashes as it comes in momentary contact with asperities on a second surface. The frequency of the flash temperatures, their strength and duration depend, in addition to the sliding speed, on the topology of the two surfaces. In this paper a model is developed for the work-heat relation with a consideration of the above-mentioned intermittent nature of contact. The work of friction on one asperity is derived in integral form and closed-form equations. The rate of generation of heat is found due to a single asperity. Using the statistical account of asperity friction heat generation, rate of heat generation between two rough surfaces is obtained both in statistical integral form and in the approximate closed form.


2009 ◽  
Vol 131 (6) ◽  
Author(s):  
A. Barletta ◽  
E. Magyari ◽  
S. Lazzari ◽  
I. Pop

Mixed convection Darcy flow in a vertical porous annulus around a straight electric cable is investigated. It is assumed that the flow is fully developed and parallel. Moreover, the Boussinesq approximation is used. The magnetic field with a steady electric current in the cable is radially varying according to the Biot–Savart law. Two flow regimes are investigated. The first is mixed convection with negligible effects of internal heat generation due to Joule heating and viscous dissipation. The second is forced convection with important effects of heat generation. In these two special cases, closed form expressions of the velocity profile and of the temperature profile, as well as of the flow rate and the Nusselt number, are obtained. The main features of these solutions are discussed.


2005 ◽  
Vol 127 (8) ◽  
pp. 945-948 ◽  
Author(s):  
B. Kundu ◽  
P. K. Das

In this paper, a generalized methodology for the optimum design of thin fins with uniform volumetric heat generation is described. Using variational calculus, the optimum profiles of longitudinal, annular, and pin fins are determined from the basic fin equation under the constraint of specified fin volume. From a common optimality criteria, a generalized closed form expression for the fin thickness is obtained for the above three types of fins. Closed-form expressions are also obtained for the optimum profiles of longitudinal and pin fins. As a special case, both the temperature profile and the shape of optimum fins without heat generation are determined.


2020 ◽  
Vol 10 (10) ◽  
pp. 3529
Author(s):  
Sung-Hwa Jeung ◽  
Junho Suh ◽  
Hyun Sik Yoon

This paper presents the change of non-dimensional characteristics and thermal behavior of different sized tilting pad journal bearings (TPJBs) with the same Sommerfeld number. A three-dimensional (3D) TPJB numerical model is provided considering the thermo-elastic hydro-dynamic (TEHD) lubrication model with pad thermal-elastic deformation. The pivot stiffness is assumed to be the combination of linear and cubic stiffness based on the Hertzian contact theory. The TPJBs in a configuration of load between pad (LBP) with the same Sommerfeld number having seven different sizes are simulated, and their non-dimensional dynamic and static characteristics and thermal behavior are compared. Pad thermal and elastic deformation are both taken into account. If the changes in lubricant viscosity, thermal deformation, and elastic deformation of journal/pads due to viscous shearing are ignored, the bearings with identical Sommerfeld numbers should show the same performance characteristics. However, the heat generation at the bearing clearance during operation (a) induces a decrease in viscosity and heat transfer to journal/pads and (b) results in a thermal deformation. Furthermore, the elastic deformation of the tilting pads and pivots also affects the bearing dynamic performance. For the same Sommerfeld number, the numerical analyses provide how the viscous shearing and elastic deformation lead to a change in bearing performance. For the small bearings with the same Sommerfeld number, the non-dimensional characteristics did not change significantly, where the heat generation was small being compared to the large sized bearing. The largest change in non-dimensional characteristics occurred when the maximum temperature of the oil film increased by 30 °C or more compared to the lubricant supply temperature. The root cause of the change in the non-dimensional characteristics is the viscous shearing in the oil film, and the thermal deformation of the structures surrounding the oil film acts in combination. These results provide insight into the Sommerfeld number, which can be used for the early stage of bearing design.


Author(s):  
Robin F. P. Gomes ◽  
Joep P. A. Nijssen ◽  
Ron A. J. van Ostayen

Abstract Compliant mechanisms consist of a monolithic body and obtain motion through elastic deformation. Multiple compliant flexure designs are known but their translational to rotation stiffness ratio is often limited. This work introduces a novel compliant hinge design with increased stiffness ratio compared to the state of the art compliant hinges. The hinge functions by having an encapsulated fluid medium that contributes to high normal stiffness, but doesn’t influence the rotational stiffness. A 2D design model is presented that shows the effect of the geometry on the stiffness ratio performance. Subsequently, a computational 3D analysis is performed and the resulting design is realized as a demonstrator. The performance is compared to conventional compliant hinges based on the stiffness ratio. This shows an increase of at least a factor 30 on the stiffness ratio.


1987 ◽  
Vol 54 (4) ◽  
pp. 898-903 ◽  
Author(s):  
K. Kumar ◽  
J. E. Cochran

Closed-form solutions are developed for elastic deformation characteristics of multilayered strands under tensile and torsional loads. These analytical results are successfully applied to obtain expressions for the effective extensional and torsional moduli of rigidity for the strands. Finally, a simple design criterion is established for “nonrotating” cables.


Author(s):  
K. Farhang ◽  
A. Elhomani

When two rough surfaces are in sliding contact an asperity on a surface would experience intermittent temperature flashes as it comes in momentary contact with asperities on a second surface. The frequency of the flash temperatures, their strength and duration depend, in addition to the sliding speed, on the topology of the two surfaces. In this paper a model is developed for the work-heat relation with a consideration of the above-mentioned intermittent nature of contact. The work of friction on one asperity is derived in integral form and closed-form equations. The rate of generation of heat is found due to a single asperity. Using the statistical account of asperity friction heat generation, rate of heat generation between two rough surfaces is obtained both in statistical integral form and in the approximate closed form.


Author(s):  
Claude Jaupart ◽  
Jean-Claude Mareschal
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document