A green biorefinery platform for cost-effective nanocellulose production: investigation of hydrodynamic properties and biodegradability of thin films

Author(s):  
Reshmy R. ◽  
Eapen Philip ◽  
Sherely A. Paul ◽  
Aravind Madhavan ◽  
Raveendran Sindhu ◽  
...  
Author(s):  
Minakshi Chaudhary ◽  
Yogesh Hase ◽  
Ashwini Punde ◽  
Pratibha Shinde ◽  
Ashish Waghmare ◽  
...  

: Thin films of PbS were prepared onto glass substrates by using a simple and cost effective CBD method. Influence of deposition time on structural, morphology and optical properties have been investigated systematically. The XRD analysis revealed that PbS films are polycrystalline with preferred orientation in (200) direction. Enhancement in crystallinity and PbS crystallite size has been observed with increase in deposition time. Formation of single phase PbS thin films has been further confirmed by Raman spectroscopy. The surface morphology analysis revealed the formation of prismatic and pebble-like PbS particles and with increase in deposition time these PbS particles are separated from each other without secondary growth. The data obtained from the EDX spectra shows the formation of high-quality but slightly sulfur rich PbS thin films over the entire range of deposition time studied. All films show increase in absorption with increase in deposition time and a strong absorption in the visible and sub-band gap regime of NIR range of the spectrum with red shift in band edge. The optical band gap shows decreasing trend, as deposition time increases but it is higher than the band gap of bulk PbS.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Inti Zumeta-Dubé ◽  
José Manuel García Rangel ◽  
Jorge Roque ◽  
Issis Claudette Romero-Ibarra ◽  
Mario Fidel García Sánchez

AbstractThe strong facet-dependent performance of glass-supported CeO2 thin films in different applications (catalysis, smart windows, etc.) has been the target of diverse fundamental and technological approaches. However, the design of accurate, cost-effective and scalable methods with the potential for large-area coverage that produce highly textured glass-supported CeO2 thin films remains a technological challenge. In the present work, it is demonstrated that under proper tuning conditions, the ultrasonic spray pyrolysis technique enables one to obtain glass-supported polycrystalline CeO2 films with noticeable texture along both the (100) and (111) directions, as well as with randomly oriented crystallites (no texture). The influence of flow rates, solution molarity, and substrate temperature on the texture and morphological characteristics, as well as optical absorption and Raman response of the deposited films, is evaluated. The obtained results are discussed on the basis of the combined dependence of the CeO2-exposed surfaces on the thermodynamic stability of the corresponding facets and the reaction kinetics, which modulate the crystallite growth direction.


Coatings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 307
Author(s):  
Diana Griesiute ◽  
Dovydas Karoblis ◽  
Lina Mikoliunaite ◽  
Aleksej Zarkov ◽  
Andrei N. Salak ◽  
...  

In the present work, polycrystalline Bi0.67La0.33Fe0.5Sc0.5O3 thin films were synthesized using a simple and cost-effective chemical solution deposition process employing the spin coating technique. In order to check the feasibility of the fabrication of thin films on various types of substrates, the films were deposited on Pt-coated silicon, silicon, sapphire, corundum, fused silica and glass. Based on the results of thermogravimetric analysis of precursor and thermal stability study, it was determined that the optimal annealing temperature for the formation of perovskite structure is 600 °C. It was observed that the relative intensity of the pseudocubic peaks (001)p and (011)p in the XRD patterns is influenced by the nature of substrates, suggesting that the formed crystallites have some preferred orientation. Roughness of the films was determined to be dependent on the nature of the substrate.


2021 ◽  
Vol 127 ◽  
pp. 105673
Author(s):  
M. Dharani Devi ◽  
A. Vimala Juliet ◽  
K. Hariprasad ◽  
V. Ganesh ◽  
H. Elhosiny Ali ◽  
...  

2021 ◽  
Vol 6 (1) ◽  
pp. 27
Author(s):  
Clemens Mart ◽  
Malte Czernohorsky ◽  
Kati Kühnel ◽  
Wenke Weinreich

Pyroelectric infrared sensors are often based on lead-containing materials, which are harmful to the environment and subject to governmental restrictions. Ferroelectric Hf1−xZrxO2 thin films offer an environmentally friendly alternative. Additionally, CMOS integration allows for integrated sensor circuits, enabling scalable and cost-effective applications. In this work, we demonstrate the deposition of pyroelectric thin films on area-enhanced structured substrates via thermal atomic layer deposition. Scanning electron microscopy indicates a conformal deposition of the pyroelectric film in the holes with a diameter of 500 nm and a depth of 8 μm. By using TiN electrodes and photolithography, capacitor structures are formed, which are contacted via the electrically conductive substrate. Ferroelectric hysteresis measurements indicate a sizable remanent polarization of up to 331 μC cm−2, which corresponds to an area increase of up to 15 by the nanostructured substrate. For pyroelectric analysis, a sinusoidal temperature oscillation is applied to the sample. Simultaneously, the pyroelectric current is monitored. By assessing the phase of the measured current profile, the pyroelectric origin of the signal is confirmed. The devices show sizable pyroelectric coefficients of −475 μC m−2 K−1, which is larger than that of lead zirconate titanate (PZT). Based on the experimental evidence, we propose Hf1−xZrxO2 as a promising material for future pyroelectric applications.


Author(s):  
Shrikant SAINI ◽  
Izuki Matsumoto ◽  
Sakura Kishishita ◽  
Ajay Kumar Baranwal ◽  
Tomohide Yabuki ◽  
...  

Abstract Hybrid halide perovskite has been recently focused on thermoelectric energy harvesting due to the cost-effective fabrication approach and ultra-low thermal conductivity. To achieve high performance, tuning of electrical conductivity is a key parameter that is influenced by grain boundary scattering and charge carrier density. The fabrication process allows tuning these parameters. We report the use of anti-solvent to enhance the thermoelectric performance of lead-free hybrid halide perovskite, CH3NH3SnI3, thin films. Thin films with anti-solvent show higher connectivity in grains and higher Sn+4 oxidation states which results in enhancing the value of electrical conductivity. Thin films were prepared by a cost-effective wet process. Structural and chemical characterizations were performed using x-ray diffraction, scanning electron microscope, and x-ray photoelectron spectroscopy. The value of electrical conductivity and the Seebeck coefficient were measured near room temperature. The high value of power factor (1.55 µW/m.K2 at 320 K) was achieved for thin films treated with anti-solvent.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Vidya S. Taur ◽  
Rajesh A. Joshi ◽  
Ramphal Sharma

The Ag-doped nanostructured CdS thin films are grown by simple, cost effective chemical ion exchange technique at room temperature on ITO-coated glass substrate. These as grown thin films are annealed at 100, 200, 300, and 400°C in air atmosphere for 1 hour. To study the effect of annealing on physicochemical and optoelectronic properties, these as grown and annealed thin films are characterized for structural, compositional, morphological, optical, and electrical properties. X-ray diffraction (XRD) pattern reveals polycrystalline nature of these thin films with increase in crystallite size from 6.4 to 11.2 nm, from XRD the direct identification of Ag doping in CdS thin films cannot be judged, while shift in characteristics peak position of CdS is observed. The Raman spectrum represents increase in full width at half maxima and intensity of characteristic peak, confirming the material modification upon annealing treatment. Presence of Cd, Ag, and S in energy dispersive X-ray analysis spectra (EDAX) confirms expected elemental composition in thin films. Scanning electron microscopy (SEM) images represent grain growth and agglomeration upon annealing. Red shift in optical absorbance strength and energy band gap values from 2.28 to 2.14 eV is obtained.I-Vresponse obtained from as grown and annealed thin films shows an enhancement in photosensitivity from 72% to 96% upon illumination to 100 mW/cm2light source.


Metals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1698
Author(s):  
Surendra K. Shinde ◽  
Dae-Young Kim ◽  
Vinayak G. Parale ◽  
Hyung-Ho Park ◽  
Hemraj M. Yadav

Developing efficient electrochemically active nanostructures from Earth-abundant elements has gained significant interest in recent years. Among different transition metals, nickel and copper are abundant electrocatalysts for energy-storage applications. Nickel–copper selenide (NiCuSe2) nanostructures were prepared on a stainless-steel mesh with a cost-effective, simple, and versatile electrodeposition method for supercapacitor applications. The change effect in the bath concentration of nickel and copper altered the structural and electrochemical properties of NiCuSe2 electrode. X-ray diffraction (XRD) patterns confirmed the pure phase of ternary NiCuSe2 thin films with a cubic crystal structure. The surface morphology of NiCuSe2 was tuned by nickel and copper from spherical porous nanoflowers, nanoplates, nanocubes, and nanosphere-like nanostructures deposited on the stainless-steel mesh. The electrochemical performance of the electrodeposited NiCuSe2 was investigated in alkaline 1 M KOH electrolyte. The synergetic effect of bimetallic nickel and copper with the selenide electrode showed superior specific capacity of about 42.46 mAh g−1 at 10 mV s−1 along with reasonable cycling stability.


Sign in / Sign up

Export Citation Format

Share Document