Usage potential of apple and carrot pomaces as raw materials for newly isolated yeast lipid-based biodiesel production

Author(s):  
Sevgi Ertuğrul Karatay ◽  
Ekin Demiray ◽  
Gönül Dönmez
2020 ◽  
Vol 32 (4) ◽  
pp. 733-738 ◽  
Author(s):  
R. Manurung ◽  
Taslim ◽  
A.G.A. Siregar

Deep eutectic solvents (DESs) have numerous potential applications as cosolvents. In this study, use of DES as organic solvents for enzymatic biodiesel production from degumming palm oil (DPO) was investigated. Deep eutectic solvent was synthesized using choline chloride salt (ChCl) compounds with glycerol and 1,2-propanediol. Deep eutectic solvent was characterized by viscosity, density, pH and freezing values, which were tested for effectiveness by enzymatic reactions for the production of palm biodiesel with raw materials DPO. Deep eutectic solvent of ChCl and glycerol produced the highest biodiesel yield (98.98%); weight of DES was only 0.5 % of that of the oil. In addition, the use of DES maintained the activity and stability of novozym enzymes, which was assessed as the yield until the 6th usage, which was 95.07 % biodiesel yield compared with the yield without using DES. Hence, using DES, glycerol in enzymatic biodiesel production had high potentiality as an organic solvent for palm oil biodiesel production


Author(s):  
K. Malins ◽  
V. Kampars ◽  
R. Kampare ◽  
T. Rusakova

The transesterification of vegetable oil using various kinds of alcohols is a simple and efficient renewable fuel synthesis technique. Products obtained by modifying natural triglycerides in transesterification reaction substitute fossil fuels and mineral oils. Currently the most significant is the biodiesel, a mixture of fatty acid methyl esters, which is obtained in a reaction with methanol, which in turn is obtained from fossil raw materials. In biodiesel production it would be more appropriate to use alcohols which can be obtained from renewable local raw materials. Ethanol rouses interest as a possible reagent, however, its production locally is based on the use of grain and therefore competes with food production so it would implicitly cause increase in food prices. Another raw material option is alcohols that can be obtained from furfurole. Furfurole is obtained in dehydration process from pentose sugars which can be extracted from crop straw, husk and other residues of agricultural production. From furfurole the tetrahydrofurfuryl alcohol (THFA), a raw material for biodiesel, can be produced. By transesterifying rapeseed oil with THFA it would be possible to obtain completely renewable biodiesel with properties very close to diesel [2-4]. With the purpose of developing the synthesis of such fuel, in this work a three-stage synthesis of rapeseed oil tetrahydrofurfurylesters (ROTHFE) in sulphuric acid presence has been performed, achieving product with purity over 98%. The most important qualitative factors of ROTHFE have been determined - cold filter plugging point, cetane number, water content, Iodine value, phosphorus content, density, viscosity and oxidative stability.


2011 ◽  
Vol 11 (spe) ◽  
pp. 16-26 ◽  
Author(s):  
Luiz Antônio dos Santos Dias

The paper analyses the puzzle of the food-energy-environmental security interaction, to which biofuels are part of the solution. It presents and discusses the contribution of genetic improvement to biofuels, with regard to the production of raw materials (oil and ethanol-producing plant species) and designs perspectives, opportunities, risks and challenges, with a special focus on the Brazilian scene. Bioethanol is a consolidated biofuel owing largely to the sugarcane breeding programs. These programs released 111 sugarcane cultivars and were responsible for a 20.8 % gain in productivity of bioethanol (in m³ ha-1) between 2000 and 2009. The program of Brazilian biodiesel production, initiated in 2005, had an annual growth rate of 10 % and the country is already the world's fourth largest producer. However, the contribution of breeding to biodiesel production is still modest, due to the lack of specific improvement programs for oil.


2015 ◽  
Vol 9 (7) ◽  
pp. 99 ◽  
Author(s):  
Nyoman Puspa Asri ◽  
Diah Agustina Puspita Sari

Synthesis of biodiesel is a strategic step in overcoming energy scarcity and the environmental degradationcaused by the continuous use of the petroleum based energy. Biodiesel as an alternative fuel for diesel engine isproduced from renewable resources such as vegetable oils and animal fats. The main obstacle in the biodieselproduction is the high price of the raw materials, resulting in the price of biodiesel is not competitive comparedto the petroleum diesel. Therefore, the use of waste frying oils (WFO) is one way to reduce the cost of biodieselproduction, because of its availability and low price. In the present work, WFO from California Fried chicken(CFC) restaurants in Surabaya were used as feed stock for the biodiesel production. The experiments wereconducted using three steps of processes: pre-treatment of WFO, preparation of alumina based compositecatalyst CaO/KI/γ-Al2O3 and transesterification of treated WFO. WFO was treated by several types and variousamounts of activated adsobents. The treated WFO was transesterified in three neck glass batch reactor withrefluxed methanol using CaO/KI/γ-Al2O3. The results reveal that the best method for treating WFO is using 7.5%(wt. % to WFO) of coconut coir. Alumina based composite catalyst CaO/KI/γ-Al2O3 was very promising fortransesterification of WFO into biodiesel. The yield of biodiesel was 83% and obtained at 65ºC, 5 h of reactiontime, 1:18 of molar ratio WFO to methanol and 6% amount of catalyst.


Author(s):  
Saidat Olanipekun Giwa ◽  
Maku Barbanas Haggai ◽  
Abdulwahab Giwa

In the recent time, there is increasing research in the area of alternative fuels as the exhausts of presently used petroleum-based fuels have been identified to have negative effects on the environment. Fuels produced from plant oils and animal fats have the tendencies of replacing petro fuels since they are renewable in nature. One of these renewable fuels is biodiesel. However, the homogenous catalyst used in biodiesel production has some drawbacks such as difficulty in separation from the fuel, soap formation and corrosiveness of the product mixture. In this work, the use of heterogeneous catalyst sourced from local raw materials (kaolin and eggshell) for the production of biodiesel from oil of desert date seed has been investigated. The kaolin obtained from Alkaleri Mining Site, Bauchi, was calcined in an oven at 800 °C for 3 h. The calcined kaolin was then chemically activated. Also, the eggshell-based catalyst was produced from raw eggshells after washing, drying, grinding, sieving using 0.3 mm sieve size and calcining at 900 °C for 3 h. Furthermore, the oil content of the desert date seed, which was acquired from a local market in Bauchi, was extracted via solvent extraction in a laboratory with a yield of 42%. Then, the biodiesel was subsequently prepared by mixing the oil, methanol and catalyst in a flat bottom flask and heating the mixture for a specified period. The catalyst concentration, methanol to oil ratio and time of reaction were subsequently varied to obtain the best yield. The results obtained revealed that an optimum yield of 29% could be obtained at methanol to oil ratio of 6:1 and a reaction time of 60 min using 1.5 g of eggshell-based catalyst while an optimum yield of 22% was obtained with 0.6 g for kaolin-based catalyst at a reaction time of 60 min and methanol to oil ratio of 4:1. It is recommended that further work should be carried out to improve on the yield of the biodiesel obtained using the heterogeneous catalysts.


2019 ◽  
Vol 65 (No. 2) ◽  
pp. 63-69
Author(s):  
Ika Amalia Kartika ◽  
Oky Tresia Ordian Bernia ◽  
Illah Sailah ◽  
Tirto Prakoso ◽  
Yohanes Aris Purwanto

Sustainable biodiesel production can be realised by the use of a low-cost feedstock, efficient energy and renewable raw materials. The simultaneous Calophyllum oil-resin extraction and its purification using a binary solvent (n-hexane mixed with alcohol) were examined to meet those aspects. The extraction conditions effect was investigated to determine the optimal oil yield and quality. n-Hexane mixed with alcohol was extracted and purified effectively the oil from Calophyllum seeds. The oil yield and its quality were mainly affected by the n-hexane-to-alcohol ratio. The oil yield enhanced as the n-hexane-to-alcohol ratio enlarged from 1:1 to 2.5:1. The acid value and density of the oil improved as the n-hexane-to-alcohol ratio declined from 2.5:1 to 1:1. The n-Hexane-to-alcohol ratio of 2.5:1 provided the best yield (59%) of the oil extracted at 40°C for 5 hours. The oil presented its best quality at 0.893 g·cm<sup>–3</sup> of density, 41.0 mPa·s of viscosity, 8.8 mg KOH·g<sup>–1</sup> of the acid value, 88.3 g per 100 g of the iodine value, &lt; 1% of moisture content and &lt; 0.04% of ash content. The oil also had an inhibitory activity against Staphylococcus aureus.


Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2204 ◽  
Author(s):  
Violeta Makareviciene ◽  
Egle Sendzikiene ◽  
Milda Gumbyte

Increasing concentrations of greenhouse gases in the atmosphere are leading to increased production and use of biofuels. The industrial development of biodiesel production and the use of biodiesel in the EU transport sector have been ongoing for almost two decades. Compared to mineral diesel production, the process of producing biodiesel is quite complex and expensive, and the search for new raw materials and advanced technologies is needed to maintain production value and expand the industrial production of biodiesel. The purpose of this article is to review the application possibilities of one of the new technologies—simultaneous extraction of oil from oily feedstock and transesterification (in situ)—and to evaluate the effectiveness of the abovementioned process under various conditions.


2019 ◽  
Vol 967 ◽  
pp. 150-154 ◽  
Author(s):  
Yoel Pasae ◽  
Lyse Bulo ◽  
Karel Tikupadang ◽  
Titus Tandi Seno

The use of heterogeneous catalysts in the biodiesel production process provides advantages because it is easier in the catalyst separation process. One type of heterogeneous catalyst that can be used is CaO. The raw materials for CaO are abundant in nature and can be obtained from various sources including agricultural waste such as eggshells. The alkalinity level of CaO can be increased to super baser CaO through the activation process of CaO by using an ammonium carbonate solution. Super base CaO which is used as a catalyst for transesterification reaction in the production of biodiesel made from palm oil. This research was carried out by varying the reaction time starting from 1, 2 and 3 hours. The highest yield was obtained at 3 hours reaction time of 93.92%. The results of the analysis of the physical properties of biodiesel obtained density in the range 853-854 kg/m3, kinematic viscosity 3.24-3.26 mm2/s (cSt), saponification number 193-201 mg-KOH/g biodiesel and acid number 0.3-0.7 mg-KOH/g. These characteristics meet the biodiesel quality standards based on Indonesian National Standard (SNI) 04-7182-2015. Thus the use of super base CaO from eggshells can be used as a catalyst in the process of biodiesel production.


2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Egle Sendzikiene ◽  
Violeta Makareviciene

Abstract The ever-increasing environmental pollution from greenhouse gases motivates the search for methods to reduce it. One such method is the use of biodiesel fuels in the transport sector. Conventional biodiesel production generates up to 10% of a by-product, raw glycerol, whose amount continues to increase as biodiesel production volumes expand, but its demand remains limited. Recently, options have been analysed to replace the triglyceride transesterification process generally used in biodiesel production with an interesterification process that does not generate raw glycerol, instead yielding triacylglycerol that can be directly used as fuel for diesel engines by mixing with fatty acid esters. Additionally, triacylglycerol improves the low-temperature properties of fuel. The present article discusses triglyceride interesterification processes using various carboxylate esters of low molecular weight. Information is provided on raw materials that can be subjected to interesterification for biodiesel synthesis. The possible applications of chemical and enzymatic catalysis for triglyceride interesterification are discussed, and the influence of the catalyst amount, molar ratio of reactants, temperature and process duration on the effectiveness of interesterification is examined. The conditions and effectiveness of noncatalytic interesterification are also discussed in the article. Qualitative indicators of the products obtained and their conformity to the requirements of the European standard for biodiesel fuel are discussed.


Sign in / Sign up

Export Citation Format

Share Document