scholarly journals Analysis and Prioritization the Effective Factors on Increasing Farmers Resilience Under Climate Change and Drought

Author(s):  
Safieh Javadinejad ◽  
Rebwar Dara ◽  
Forough Jafary

Abstract California is severely exposed to drought and damage due to the climate change and drought belt, which has a major impact on agriculture. So, after the drought crisis, there are various reactions from farmers. The extent of the damage caused by the socioeconomic, environment and the extent of the resistance of farmers to this crisis is manifested in a variety of ways. Recognizing the population’s resilience and the involved human groups is a tool for preventing a catastrophe-based increase in life-threatening areas in high-risk areas. Sometimes the inability to manage this phenomenon (especially under the climate change) leads to farmers’ desertification and agricultural land release, which itself indicates a low level of resilience and resilience to the crisis. The recent drought under the climate change condition in California and the severity of the damage sustained by farmers continue to be vulnerable. The present study seeks to prioritize and prioritize resilience of farmers to the crisis under the climate change. This study simulated drought condition with using PDSI value for current and future time period. In order to calculate PDSI values, the climatic parameters extracted from CMIP5 models and downscaled under the scenario of RCP 8.5. Also in order to understand the resilience of the agriculture activities under the climate change, this study was performed using statistical tests and data from the questionnaire completed in the statistical population of 320 farmers in the Tulare region in California. The findings of the research by t test showed that the average level of effective factors in increasing the resilience of farmers in the region is low. This is particularly significant in relation to the factors affecting government policies and support. So that only the mean of five variables is higher than the numerical desirability of the test and the other 15 variables do not have a suitable status for increasing the resilience of the farmers. Also, the results of the Vikor model showed that most of the impact on their resilience to drought and climate change was the development of agricultural insurance, the second important impact belongs to drought monitoring system, climate change and damage assessment, and variable of attention to knowledge is in third place of the important factor.

GIS Business ◽  
2019 ◽  
Vol 14 (3) ◽  
pp. 80-95
Author(s):  
Mehranrohanikahrizi ◽  
Saeedsedaghati ◽  
Akrammastandehi

Since consumers are the turning point of all marketing activities. Successful marketing begins with the understanding of why and how consumers behave. In today's competitive world, most companies emphasize customer preservation as the key to success. The present study is, in terms of purpose, of applied research type, because the findings The research can be used to solve executive issues. In other words, after performing statistical tests and discussing and concluding, we can examine the factors affecting brand equity. This research is also causally causal due to the nature and research approach because it seeks to investigate the impact between variables. The data gathering method is also a descriptive and correlational research and qualitative data type. The statistical population of this research is Samsung mobile phone customers in Tehran. The most important methods for data collection are this Research is library studies and field studies.


2021 ◽  
pp. 14-20
Author(s):  
M. I. LOSKIN ◽  

The current state of agricultural land reclamation in the Republic of Sakha (Yakutia), its role in agricultural production of the republic, taking into account the impact of climate change on irrigation facilities, is considered. It has been established that at present in the sphere of public administration in the field of land reclamation in the republic there are estuary irrigation systems, drainage systems and agricultural water supply facilities, as well as group water pipelines for water supply of rural settlements and irrigation of agricultural land.


2019 ◽  
Vol 2 (2) ◽  
Author(s):  
Mirko Andreja Borisov

Climate change conditions a wide range of impacts such as the impact on weather, but also on ecosystems and biodiversity, agriculture and forestry, human health, hydrological regime and energy. In addition to global warming, local factors affecting climate change are being considered. Presentation and analysis of the situation was carried out using geoinformation technologies (radar recording, remote detection, digital terrain modeling, cartographic visualization and geostatistics). This paper describes methods and use of statistical indicators such as LST, NDVI and linear correlations from which it can be concluded that accelerated construction and global warming had an impact on climate change in period from 1987 to 2018 in the area of Vojvodina – Republic of Serbia. Also, using the global SRTM DEM, it is shown how the temperature behaves based on altitude change. Conclusions and possible consequences in nature and society were derived.


2021 ◽  
Author(s):  
Sabina Abba-Omar ◽  
Francesca Raffaele ◽  
Erika Coppola ◽  
Daniela Jacob ◽  
Claas Teichmann ◽  
...  

<p>The impact of climate change on precipitation over Southern Africa is of particular interest due to its possible devastating societal impacts. To add to this, simulating precipitation is challenging and models tend to show strong biases over this region, especially during the Austral Summer (DJF) months. One of the reasons for this is the mis-representation of the Angolan Low (AL) and its influence on Southern Africa’s Summer precipitation in the models. Therefore, this study aims to explore and compare different models’ ability to capture the AL and its link to precipitation variability as well as consider the impact climate change may have on this link. We also explore how the interaction between ENSO, another important mode of variability for precipitation, and the Angolan Low, impact precipitation, how the models simulate this and whether this could change in the future under climate change. </p><p>We computed the position and strength of the AL in reanalysis data and compared these results to three different model ensembles with varying resolutions. Namely, the CORDEX-CORE ensemble (CCORE), a new phase of CORDEX simulations with higher resolutions (0.22 degrees), the lower resolution (0.44 degrees) CORDEX-phase 1 ensemble (C44) and the CMIP5 models that drive the two RCM ensembles. We also used Self Organizing Maps to group DJF yearly anomaly patterns and identify which combination of ENSO and AL strength scenarios are responsible for particularly wet or dry conditions. Regression analysis was performed to analyze the relationships between precipitation and the AL and ENSO. This analysis was repeated for near (2041-2060) and far (2080-2099) future climate and compared with the present to understand how the strength of the AL, and its connection to precipitation variability and ENSO, changes in the future. </p><p>We found that, in line with previous studies, models with stronger AL tend to produce more rainfall. CCORE tends to simulate a stronger AL than C44 and therefore, higher precipitation biases. However, the regression analysis shows us that CCORE is able to capture the relationship between precipitation and the AL strength variability as well as ENSO better than the other ensembles. We found that generally dry rainfall patterns over Southern Africa are associated with a weak AL and El Nino event whereas wet rainfall patterns occur during a strong AL and La Nina year. While the models are able to capture this, they also tend to show more neutral ENSO conditions associated with these wet and dry patterns which possibly indicates less of a connection between AL strength and ENSO than seen in the observed results. Analysis of the future results indicates that the AL weakens, this is shown across all the ensembles and could be a contributing factor to some of the drying seen. These results have applications in understanding and improving model representation of precipitation over Southern Africa as well as providing some insight into the impact of climate change on precipitation and some of its associated dynamics over this region.</p>


Land ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 96
Author(s):  
Ivan Takáč ◽  
Jarmila Lazíková ◽  
Ľubica Rumanovská ◽  
Anna Bandlerová ◽  
Zuzana Lazíková

Agricultural land is a limited natural resource with increasing economic value. This study analyses land rental relationships in Slovakia, including legal rental regulations, and identifies the impact of certain factors, such as the European Union Common Agricultural Policy (CAP) payments, and geographical and economic factors on land rental prices. From the results of econometric models, it was found that certain CAP payments have an effect on rental prices, mainly the single area payment scheme (SAPS), payments for agri-environmental-climate schemes (AECS), and animal welfare, which were found to have positive effects. Other important factors found to influence rental prices are economic indicators (such as total revenue share of total costs, share of revenue from agricultural production in terms of total revenue, share of production costs as a percentage of total costs, wages, and number of employees) and geographical factors (such as region or partial production areas). However, the distance of the farm from the district city (LAU 1) and the share of farmland affected by natural constraints do not considerably affect rental prices in Slovakia. Land consolidation is a statistically significant factor according to the models; however, its impact is almost zero. Knowledge of these factors constitutes important know-how, not only for policy makers but also for the actors operating in the land rental market (e.g., landlords, tenants, experts on land valuation, and real estate agents).


Water ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2174 ◽  
Author(s):  
Jingcai Wang ◽  
Hui Lin ◽  
Jinbai Huang ◽  
Chenjuan Jiang ◽  
Yangyang Xie ◽  
...  

Huai River Basin (HRB) is an important food and industrial production area and a frequently drought-affected basin in eastern China. It is necessary to consider the future drought development for reducing the impact of drought disasters. Three global circulation models (GCMs) from Coupled Model Intercomparison Project phase 5 (CMIP5), such as CNRM-CM5 (CNR), HadGEM2-ES (Had) and MIROC5 (MIR), were used to assessment the future drought conditions under two Representative Concentration Pathways (RCPs) scenarios, namely, RCP4.5 and RCP8.5. The standardized precipitation evapotranspiration index (SPEI), statistical method, Mann-Kendall test, and run theory were carried out to study the variations of drought tendency, frequency, and characteristics and their responses to climate change. The research showed that the three CMIP5 models differ in describing the future seasonal and annual variations of precipitation and temperature in the basin and thus lead to the differences in describing drought trends, frequency, and drought characteristics, such as drought severity, drought duration, and drought intensity. However, the drought trend, frequency, and characteristics in the future are more serious than the history. The drought frequency and characteristics tend to be strengthened under the scenario of high concentration of RCP8.5, and the drought trend is larger than that of low concentration of RCP4.5. The lower precipitation and the higher temperature are the main factors affecting the occurrence of drought. All three CMIP5 models show that precipitation would increase in the future, but it could not offset the evapotranspiration loss caused by significant temperature rise. The serious risk of drought in the future is still higher. Considering the uncertainty of climate models for simulation and prediction, attention should be paid to distinguish the effects of different models in the future drought assessment.


2020 ◽  
Author(s):  
Youness Hrour ◽  
Zahra Thomas ◽  
Ophélie Fovet ◽  
Pauline Rousseau-Gueutin ◽  
Pascal Pichelin ◽  
...  

<p>Water resources depletion under climate change is a major concern over the world. Mediterranean countries are deeply affected by changes in precipitation intensity, duration and frequency. Such changes lead to decrease in the averaged stream discharge and groundwater recharge consequently decreasing water resources availability. Our research focused on a case study performed in the Loukkos catchment, draining an area of 3730 km², located in the north of Morocco. Trend analysis of 8 to 62 years of precipitations was conducted based on statistical tests at about ten stations over the catchment. 20 to 70 years of temperature and discharge data were also analyzed. The time series were investigated using several non-parametric tests in order to characterize trends, to track down changes and their effect on agricultural land changes at the catchment scale. The present study highlights the impact of climate and catchment hydrology on agricultural practices and water resources used for irrigation. Analysis of precipitation indices showed that the temporal distribution of precipitation in the study area has changed since the 1970s. This change results from a reduction in precipitation, a shift in the hydrological year and a reduction in the number of wet days per year. Severe drought periods appear after the climatic rupture, which occurred around 1971. An increase in the intensity and frequency of droughts, in addition to an increase in the annual and seasonal average temperature (more than 1°C) were observed. Such changes contributed to agricultural practice modifications, with development of irrigated agriculture and later sowing period to adapt to the delay in the onset of the rains. For the future, the use of IPCC/CMIP5 climate projections for the Mediterranean region will help to evaluate how the precipitation indices will evolve. The impact of irrigation on stream discharge and groundwater recharge needs to be considered through agro-hydrological modeling including agricultural trajectory. Such tools will help to strengthen agricultural adaptation strategies and promote resilient farming practices.</p><p>Keywords: Precipitation trends, agricultural land use, water use for irrigation, agricultural adaptation strategies.</p><p> </p>


Author(s):  
Salah Rezaie ◽  
Seyed Javad Mirabedini ◽  
Ataollah Abtahi

Though many organizations have turned to developing and using businessintelligence systems, not all have been successful in implementing such systems. These systemshave social-technical dimensions with many elements and are very complicated. Numerousstudies have been carried out on implementation and employment of business intelligence, butin the past studies only specific aspects and dimensions have been addressed. The aim of thisstudy is to identify key factors in the implementation process of business intelligence in theIranian banking industry. The present research is objectively applied as a survey study inimplementation strategy. Also it is a descriptive study in terms of the research plan and datacollection where two documentary and field study methods have been used for collecting data.The statistical population of this study comprises experts and professionals in informationtechnology who are active in implementing solutions for business intelligence in the bankingindustry of Iran. In this study, 16 people were chosen based on non-random judgment samplingcombined with targeted and snowball sampling as a statistical sample and their viewpointswere extracted and refined using the Fuzzy Delphi Technique. First through studying pastresearch records and reviewing literature of effective factors in implementing businessintelligence process, 37 factors were identified. Then by implementing five rounds of the FuzzyDelphi Technique, 39 factors were confirmed as significant among 37 factors affecting thebusiness intelligence implementation process in past studies and 10 factors proposed by experts.Also, these 39 factors were classified in nine main groups including organizational, human, dataquality, environmental, system ability, strategic, service quality, technical infrastructure, andmanagerial factors. Managers and executives of business intelligence projects in Iran's bankingindustry can achieve the given objectives and results by considering such significant factors inplanning and taking measures related to effective implementation of business intelligence.


2019 ◽  
Vol 21 (2) ◽  
pp. 141-152

<p>This study focuses on the impact of climate change on rainfall-runoff pattern, and to assess the surface runoff and groundwater recharge potential from the intensified rainfall for the effective management of surface and groundwater resources in Tirunelveli city. The rainfall contribution is consistent, dependent, maximum and intensified during the month of November followed by October and December. The intensified rainfall in these months causes a temperature decrease and the climate becomes more and more colder than ever. The indices SPI and DI clear show that there is a change in climatic pattern. Landuse Landcover (LULC) analysis shows that the residential area and mining area is on the increasing trend, Village area is slightly increasing, agricultural area and dense scrub area is on the decreasing trend. The present capacity of the storage tanks available in Tirunelveli city is less than the maximum runoff generated during the month of November. The increase in residential area in LULC reflects the direct linear relation with the population increase of the city. The impact of urbanization leads to LULC change with the loss of agricultural land and water bodies.</p>


2021 ◽  
Vol 25 (4) ◽  
pp. 1923-1941
Author(s):  
Patrick Morrissey ◽  
Paul Nolan ◽  
Ted McCormack ◽  
Paul Johnston ◽  
Owen Naughton ◽  
...  

Abstract. Lowland karst aquifers can generate unique wetland ecosystems which are caused by groundwater fluctuations that result in extensive groundwater–surface water interactions (i.e. flooding). However, the complex hydrogeological attributes of these systems, linked to extremely fast aquifer recharge processes and flow through well-connected conduit networks, often present difficulty in predicting how they will respond to changing climatological conditions. This study investigates the predicted impacts of climate change on a lowland karst catchment by using a semi-distributed pipe network model of the karst aquifer populated with output from the high spatial resolution (4 km) Consortium for Small-scale Modelling Climate Lokalmodell (COSMO-CLM) regional climate model simulations for Ireland. An ensemble of projections for the future Irish climate were generated by downscaling from five different global climate models (GCMs), each based on four Representative Concentration Pathways (RCPs; RCP2.6, RCP4.5, RCP6.0 and RCP8.5) to account for the uncertainty in the estimation of future global emissions of greenhouse gases. The one-dimensional hydraulic/hydrologic karst model incorporates urban drainage software to simulate open channel and pressurised flow within the conduits, with flooding on the land surface represented by storage nodes with the same stage volume properties of the physical turlough basins. The lowland karst limestone catchment is located on the west coast of Ireland and is characterised by a well-developed conduit-dominated karst aquifer which discharges to the sea via intertidal and submarine springs. Annual above ground flooding associated with this complex karst system has led to the development of unique wetland ecosystems in the form of ephemeral lakes known as turloughs; however, extreme flooding of these features causes widespread damage and disruption in the catchment. This analysis has shown that mean, 95th and 99th percentile flood levels are expected to increase by significant proportions for all future emission scenarios. The frequency of events currently considered to be extreme is predicted to increase, indicating that more significant groundwater flooding events seem likely to become far more common. The depth and duration of flooding is of extreme importance, both from an ecological perspective in terms of wetland species distribution and for extreme flooding in terms of the disruption to homes, transport links and agricultural land inundated by flood waters. The seasonality of annual flooding is also predicted to shift later in the flooding season, which could have consequences in terms of ecology and land use in the catchment. The investigation of increasing mean sea levels, however, showed that anticipated rises would have very little impact on groundwater flooding due to the marginal impact on ebb tide outflow volumes. Overall, this study highlights the relative vulnerability of lowland karst systems to future changing climate conditions, mainly due to the extremely fast recharge which can occur in such systems. The study presents a novel and highly effective methodology for studying the impact of climate change in lowland karst systems by coupling karst hydrogeological models with the output from high-resolution climate simulations.


Sign in / Sign up

Export Citation Format

Share Document