scholarly journals Influence of Rib Stiffness and Limited Long-Term Junction Strength on Geogrid Performance

2019 ◽  
Vol 7 (2) ◽  
pp. 175-190
Author(s):  
Werner Müller ◽  
Andreas Wöhlecke

Abstract The description of the behavior of geogrids in reinforced soil constructions usually ignores long-term behavior and possible failure modes of junctions between longitudinal and transverse ribs. Two proposals have been made during recent years to overcome this drawback. The first analytic approach applies only to rigid geogrids and assumes a specific tensile-shear failure mode of geogrid junctions. The second numerical approach applies also for non-rigid geogrids and takes into account different modes of junction failure. This note discusses the two approaches focusing on the effects of rib stiffness and limited strength, different failure modes and degradation of junctions. It is shown that the mentioned effects should be considered in geogrid design, because they may alter significantly the long-term geogrid performance.

Author(s):  
Dongqi Jiang ◽  
Shanquan Liu ◽  
Tao Chen ◽  
Gang Bi

<p>Reinforced concrete – steel plate composite shear walls (RCSPSW) have attracted great interests in the construction of tall buildings. From the perspective of life-cycle maintenance, the failure mode recognition is critical in determining the post-earthquake recovery strategies. This paper presents a comprehensive study on a wide range of existing experimental tests and develops a unique library of 17 parameters that affects RCSPSW’s failure modes. A total of 127 specimens are compiled and three types of failure modes are considered: flexure, shear and flexure-shear failure modes. Various machine learning (ML) techniques such as decision trees, random forests (RF), <i>K</i>-nearest neighbours and artificial neural network (ANN) are adopted to identify the failure mode of RCSPSW. RF and ANN algorithm show superior performance as compared to other ML approaches. In Particular, ANN model with one hidden layer and 10 neurons is sufficient for failure mode recognition of RCSPSW.</p>


2020 ◽  
pp. 136943322098165
Author(s):  
Jianyang Xue ◽  
Xin Zhang ◽  
Xiaojun Ke

This paper mainly focused on the seismic performance and shear calculation method of steel reinforced high-strength concrete (SRHC) columns with rectangular helical hoops. An experimental investigation was performed in this paper. Eleven SRHC columns with rectangular helical hoops and one with ordinary hoops were constructed at the laboratory of Guangxi university. The failure modes, hysteresis loops, envelope curves, characteristic loads and displacements and cumulative damage analysis are presented and investigated. It can be seen from the test results that the failure modes of SRHC columns can be divided into three types with the shear span ratio increased, namely, shear baroclinic failure mode, flexure-shear failure mode and flexure failure mode. In addition, the specimens with rectangular helical hoops have plumper hysteretic loops. Shear span ratio is the main influencing factor of characteristic load; the axial compression ratio and concrete strength have less influence on characteristic load, while stirrup ratio has little effect on the characteristic load. Finally, a calculation method for shear capacity of SRHC columns under shear baroclinic failure and flexure-shear failure mode is proposed.


2012 ◽  
Vol 166-169 ◽  
pp. 1489-1497 ◽  
Author(s):  
Shi Yan ◽  
Lei Liu ◽  
Peng Li ◽  
Zhi Qiang Xin ◽  
Bao Xin Qi

The dynamic response and failure mode of light-weight steel columns under blast loads were studied in this paper by using nonlinear finite element analysis (FEA) software ANSYS/ LS-DYNA, aiming to develop the degree and modes of the excessive plastic deformation during failures of the columns under diverse parameters. The damaged columns with initial blast-induced deformation may evidently influence vertical stability of light-weight steel frame structures. During the numerical simulation, the element of three dimensional solid SOLID164 was used, and the strain rate effect on material strength was included in the material model with Plastic-Kinematic (MAT-03). The main parameters included in the analysis were boundary conditions, scaled distances of explosions, and the vertical compressive load ratios applied on tops of the columns. The results showed that the column with both two fixed ends was the most beneficial to resist blast shock wave, the horizontal displacement at the middle span of the columns were obviously decreasing as increasing of the scaled distances of the explosion, and the axial compression ratio only significantly influenced the column with a sliding end. The failure modes of the developed columns may be summarized as bending failure, direct shear failure, and bending shear combination failure.


2021 ◽  
Author(s):  
Xianda Yang ◽  
Lihui Sun ◽  
Jiale Song ◽  
Bensheng Yang ◽  
Chengren Lan

Abstract Bond strength is one of the most important parameters and can affect the macroscopic mechanical properties and the damage state of the rock to some degree. The coarse-grained sandstone with strength of less than 40 MPa was studied by the controlled variable method. The influence of parallel bond strength on the peak strength and failure mode of coarse-grained sandstone was simulated, the evolution law of peak strength and failure mode of bond strength were comprehensively analyzed. The results show that the peak strength of rock was positively correlated with the bond strength, the difference value between tensile and shear crack was negatively correlated with tensile bond strength and positively correlated with shear bond strength. Tensile-shear bond strength ratio less than 0.5, the peak strength of the rock was usually stable at the certain extreme value under a constant tensile bond strength. Tensile crack was negatively correlated with the tensile-shear bond strength ratio, shear crack was positively correlated with the tensile-shear bond strength ratio. The failure mode of coarse-grained sandstone is shear failure. The research results can be used to guide the ground control of other mine stopes or roadways with weak cementation lithology.


2021 ◽  
Author(s):  
Lijie Chen ◽  
Jianbing Peng ◽  
Fei Xie ◽  
Yanqiu Leng ◽  
Penghui Ma ◽  
...  

Abstract It is of great significance to study the time-dependent mechanical properties of loess, as loess landslides are closely related to them. The purpose of this study is to investigate the effect of moisture content on instantaneous and time-dependent deformation, strength and failure behaviors of undisturbed loess specimens from Nangou in Yan'an City, Shanxi Province, China, via triaxial shearing tests and multi-loading triaxial creep tests under moisture contents of 5%, 10%, 17% and 22%. The results show that the time-dependent deformation of loess increase with the moisture content, while the time-dependent deformation rate decreases slowly. The soil deformation is divided into four stages based on the peak strain rate. Furthermore, the instantaneous and long-term strength of loess decrease with increasing moisture content, and the instantaneous strength decreases more than the long-term strength. The failure mode of undisturbed loess changes from shear failure to homogeneous failure with increasing moisture content; when the failure mode is shear failure, the thickness of the shear band that forms at the specimen surface over time is smaller than the corresponding thickness that forms instantaneously. Finally, the macroscopic morphology and microstructure of loess specimens were considered together to analyze the effect of moisture content on the instantaneous and long-term mechanical behavior of loess and to discuss the process of loess deformation to failure.


2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Taoli Xiao ◽  
Mei Huang ◽  
Min Gao

An experimental study of a rock-like material containing a preexisting fissure subjected to loading and unloading triaxial compression is carried out, and the results show that the mechanical characteristics of the rock-like specimen depend heavily on the loading paths and the inclination of the fissure. The triaxial loading experiment results show that the failure strength linearly increases, while the residual strength linearly decreases with increasing inclination. Furthermore, specimens subjected to triaxial compression show an “X”-type shear failure mode. The triaxial unloading compression experimental results show that specimens with different inclination angles have various failure modes. Specimens with gentle inclinations show a tensile-shear mix failure mode, specimens with middle inclinations show a shear-sliding failure mode, and specimens with steep inclinations show a tensile failure mode. These findings can be used to forecast excavation-induced instabilities in deep underground engineering rock structures.


2006 ◽  
Vol 3-4 ◽  
pp. 173-178
Author(s):  
E.E. Gdoutos ◽  
M.S. Konsta-Gdoutos

Facing compressive failure, facing wrinkling and core shear failure are the most commonly encountered failure modes in sandwich beams with facings made of composite materials. The occurrence and sequence of these failure modes depends on the geometrical dimensions, the form of loading and type of support of the beam. In this paper the above three failure modes in sandwich beams with facings made of carbon/epoxy composites and cores made of aluminum honeycomb and two types of foam have been investigated. Two types of beams, the simply supported and the cantilever have been considered. Loading included concentrated and uniform. It was found that in beams with foam core facing wrinkling and core shear failure occur, whereas in beams with honeycomb core facing compressive failure and core shear crimping take place. Results were obtained for the dependence of failure mode on the geometry of the beam and the type of loading. The critical beam spans for failure mode transition from core shear to wrinkling failure were established. It was found that initiation of a particular failure mode depends on the properties of the facing and core materials, the geometrical configuration and loading of composite sandwich beams.


2010 ◽  
Vol 160-162 ◽  
pp. 1744-1748 ◽  
Author(s):  
Bao Lai Wang ◽  
Zhen Qing Wang ◽  
Guo Dong Fang ◽  
Jun Liang ◽  
Li Min Zhou

Based on changing the braid angle and geometrical sizes, the compressive experiment of 3D braided four-directional Carbon/Epoxy braided composites is researched. It is found that failure of the braided composites exhibits compressive and shear failure mode. The failure crack propagates mainly in one or two 45º shear direction. Epoxy matrix among braid yarns of the braided composites is squeezed out to form epoxy band. The stress-strain relations of the braided composites with 45º and 30º braid angles all appear nonlinear apparently. Meanwhile the correlation of failure modes and constitutive relation with geometrical sizes of the braided composites is obtained. The compressive stress-strain relations of the braided composites are not great affected by the geometrical sizes. The compressive strengths with great discrete behaviors do not have obvious rules with height of the braided composites.


2017 ◽  
Vol 9 (1) ◽  
Author(s):  
Xin Dong ◽  
Hao Lu ◽  
Houxu Huang ◽  
Yiqing Hao ◽  
Yuanpu Xia

AbstractWater-filled fractures continue to grow after the excavation of karst tunnels, and the hydraulic pressure in these fractures changes along with such growth. This paper simplifies the fractures in the surrounding rock as flat ellipses and then identifies the critical hydraulic pressure values required for the occurrence of tensile-shear and compression-shear failures in water-filled fractures in the case of plane stress. The occurrence of tensile-shear fracture requires a larger critical hydraulic pressure than compression-shear failure in the same fracture. This paper examines the effects of fracture strike and lateral pressure coefficient on critical hydraulic pressure, and identifies compression-shear failure as the main failure mode of water-filled fractures. This paper also analyses the hydraulic pressure distribution in fractures with different extensions, and reveals that hydraulic pressure decreases along with the continuous growth of fractures and cannot completely fill a newly formed fracture with water. Fracture growth may be interrupted under the effect of hydraulic tensile shear.


Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1132
Author(s):  
Guozhu Wang ◽  
Yu Wang ◽  
Lei Song ◽  
Hao Shi ◽  
Mingwei Zhang ◽  
...  

Layered rock masses with holes are common in nature. Their mechanical behavior plays an important role in the safety and stability of engineering structures. However, previous studies have concentrated on a single lithological layer, and few studies have reported on the mechanical behavior of layered rock masses with holes. Based on the concept of symmetry, uniaxial compression tests and numerical simulations were performed on rock-like specimens with three layers and a hole in the interlayer. The hole was in the center of the sample and was symmetrical up and down. The influence of the thickness and strength of the interlayer on the mechanical behavior and failure processes of the layered rock masses with holes was investigated. The results show that the peak strength and elastic modulus were associated with the thickness and strength of the interlayer. Three failure modes were observed in the specimens, which were not only related to the thickness and strength of the interlayer, but also affected by the presence of the hole. When the thickness of the interlayer is small, mainly a single failure mode was observed (tensile failure or shear failure). However, when the interlayer was thick, the failure mode was tension-shear mixed failure. The failure mechanism of the specimens was primarily crack propagation at the edge of the hole. These research results can provide a basis for site selection, and the design of surrounding rock protection and support parameters, and thus have important practical significance for improving surrounding rock stability and ensuring construction safety.


Sign in / Sign up

Export Citation Format

Share Document