Expression of the rat NHE isoforms 1–4 in the different cell types of the rat gastric mucosa

1995 ◽  
Vol 108 (4) ◽  
pp. A216
1993 ◽  
Vol 41 (9) ◽  
pp. 1405-1412 ◽  
Author(s):  
M J Nissinen ◽  
P Panula

We studied the distribution of histamine (HA) immunoreactivity in endocrine cells of the acid-producing mucosa in rat stomach with pre-embedding immunoelectron microscopy (IEM) using an antiserum against HA. Four fixation modifications were compared to optimize the ultrastructural morphology and staining pattern with the antisera produced against carbodiimide-conjugated HA. Fixation with 4% 1-ethyl-3(3-dimethyl-aminopropyl) carbodiimide (EDCDI) combined with both 4% paraformaldehyde and 0.1% glutaraldehyde gave superior results compared with EDCDI alone. Enterochromaffin-like (ECL) cells were easily distinguished from other endocrine cells in optimally fixed samples. The peroxidase end-product was distributed within the cytoplasm surrounding the vesicles of the ECL cells. ECL cells comprised about 75% of all endocrine cells, and about 90% of them were HA immunoreactive (HA-IR). No other HA-IR cell types were identified by EM in the basal half of the oxyntic region of rat gastric mucosa. The results suggest that a combination of EDCDI and aldehydes is suitable for IM demonstration of HA in cells. ECL cells from a predominant portion of endocrine cells in the oxyntic glands and may constitute the only significant non-mast cell store of HA in rat gastric mucosa.


2001 ◽  
Vol 281 (2) ◽  
pp. G447-G458 ◽  
Author(s):  
Heidi Rossmann ◽  
Thorsten Sonnentag ◽  
Alexander Heinzmann ◽  
Barbara Seidler ◽  
Oliver Bachmann ◽  
...  

Several Na+/H+exchanger (NHE) isoforms are expressed in the stomach, and NHE1 and NHE2 knockout mice display gastric mucosal atrophy. This study investigated the cellular distribution of the NHE isoforms NHE1, NHE2, NHE3, and NHE4 in rabbit gastric epithelial cells and their regulation by intracellular pH (pHi), hyperosmolarity, and an increase in cAMP. Semiquantitative RT-PCR and Northern blot experiments showed high NHE1 and NHE2 mRNA levels in mucous cells and high NHE4 mRNA levels in parietal and chief cells. Fluorescence optical measurements in cultured rabbit parietal and mucous cells using the pH-sensitive dye 2′,7′-bis(2-carboxyethyl)-5(6)-carboxyfluorescein and NHE isoform-specific inhibitors demonstrated that in both cell types, intracellular acidification activates NHE1 and NHE2, whereas hyperosmolarity activates NHE1 and NHE4. The relative contribution of the different isoforms to pHi- and hyperosmolarity-activated Na+/H+ exchange in the different cell types paralleled their relative expression levels. cAMP elevation also stimulated NHE4, whereas an increase in osmolarity above a certain threshold further increased NHE1 and not NHE4 activity. We conclude that in rabbit gastric epithelium, NHE1 and NHE4 regulate cell volume and NHE1 and NHE2 regulate pHi. The high NHE1 and NHE2 expression levels in mucous cells may reflect their special need for pHi regulation during high gastric acidity. NHE4 is likely involved in volume regulation during acid secretion.


Author(s):  
Guanglin Cui ◽  
Yaobo Yuan ◽  
Yanan Wang ◽  
Zhenfeng Li

AbstractNecroptosis is a novel manner of programmed cell death and important for tissue development, homeostasis, damage, and repair. Activation of receptor-interacting protein kinase 3 (RIPK3), a key member of receptor-interacting protein family in contributing significantly to necroptosis, in tissues is a hallmark of cells dying by necroptosis. However, there are few studies that examine the expression of RIPK3 in the glandular cells of stomachs under physiological condition. We have therefore conducted this study to immunohistochemically characterize the key element of necroptosis, RIPK3, in the mouse and human stomach. Results showed that RIPK3 positive cells could be observed in the surface mucosal cells, granular cells, and lamina propria cells in both mouse and human stomach tissues. Ratios of PCNA/RIPK3 positive cells in the glandular cells were ~ 2.1 in mouse and ~ 4.15 in human sections respectively. Morphological and double immunofluorescence analysis confirmed that these RIPK3 positive cells were mucous, parietal and lamina propria cells. Our results indicate that the expression of RIPK3 in different cell types might contribute to cell turnover of gastric mucosa in the mouse and human stomach under physiological condition.


Author(s):  
U. Aebi ◽  
P. Rew ◽  
T.-T. Sun

Various types of intermediate-sized (10-nm) filaments have been found and described in many different cell types during the past few years. Despite the differences in the chemical composition among the different types of filaments, they all yield common structural features: they are usually up to several microns long and have a diameter of 7 to 10 nm; there is evidence that they are made of several 2 to 3.5 nm wide protofilaments which are helically wound around each other; the secondary structure of the polypeptides constituting the filaments is rich in ∞-helix. However a detailed description of their structural organization is lacking to date.


1992 ◽  
Vol 67 (01) ◽  
pp. 154-160 ◽  
Author(s):  
P Meulien ◽  
M Nishino ◽  
C Mazurier ◽  
K Dott ◽  
G Piétu ◽  
...  

SummaryThe cloning of the cDNA encoding von Willebrand factor (vWF) has revealed that it is synthesized as a large precursor (pre-pro-vWF) molecule and it is now clear that the prosequence or vWAgll is responsible for the intracellular multimerization of vWF. We have cloned the complete vWF cDNA and expressed it using a recombinant vaccinia virus as vector. We have characterized the structure and function of the recombinant vWF (rvWF) secreted from five different cell types: baby hamster kidney (BHK), Chinese hamster ovary (CHO), human fibroblasts (143B), mouse fibroblasts (L) and primary embryonic chicken cells. Forty-eight hours after infection, the quantity of vWF antigen found in the cell supernatant varied from 3 to 12 U/dl depending on the cell type. By SDS-agarose gel electrophoresis, the percentage of high molecular weight forms of vWF varied from 39 to 49% relative to normal plasma for BHK, CHO, 143B and chicken cells but was less than 10% for L cells. In all cell types, the two anodic subbands of each multimer were missing. The two cathodic subbands were easily detected only in BHK and L cells. By SDS-PAGE of reduced samples, pro-vWF was present in similar quantity to the fully processed vWF subunit in L cells, present in moderate amounts in BHK and CHO and in very low amounts in 143B and chicken cells. rvWF from all cells bound to collagen and to platelets in the presence of ristocetin, the latter showing a high correlation between binding efficiency and degree of multimerization. rvWF from all cells was also shown to bind to purified FVIII and in this case binding appeared to be independent of the degree of multimerization. We conclude that whereas vWF is naturally synthesized only by endothelial cells and megakaryocytes, it can be expressed in a biologically active form from various other cell types.


Acta Naturae ◽  
2016 ◽  
Vol 8 (2) ◽  
pp. 79-86 ◽  
Author(s):  
P. V. Elizar’ev ◽  
D. V. Lomaev ◽  
D. A. Chetverina ◽  
P. G. Georgiev ◽  
M. M. Erokhin

Maintenance of the individual patterns of gene expression in different cell types is required for the differentiation and development of multicellular organisms. Expression of many genes is controlled by Polycomb (PcG) and Trithorax (TrxG) group proteins that act through association with chromatin. PcG/TrxG are assembled on the DNA sequences termed PREs (Polycomb Response Elements), the activity of which can be modulated and switched from repression to activation. In this study, we analyzed the influence of transcriptional read-through on PRE activity switch mediated by the yeast activator GAL4. We show that a transcription terminator inserted between the promoter and PRE doesnt prevent switching of PRE activity from repression to activation. We demonstrate that, independently of PRE orientation, high levels of transcription fail to dislodge PcG/TrxG proteins from PRE in the absence of a terminator. Thus, transcription is not the main factor required for PRE activity switch.


2020 ◽  
Vol 19 (4) ◽  
pp. 248-256
Author(s):  
Yangmin Zheng ◽  
Ziping Han ◽  
Haiping Zhao ◽  
Yumin Luo

Conclusion: Stroke is a complex disease caused by genetic and environmental factors, and its etiological mechanism has not been fully clarified yet, which brings great challenges to its effective prevention and treatment. MAPK signaling pathway regulates gene expression of eukaryotic cells and basic cellular processes such as cell proliferation, differentiation, migration, metabolism and apoptosis, which are considered as therapeutic targets for many diseases. Up to now, mounting evidence has shown that MAPK signaling pathway is involved in the pathogenesis and development of ischemic stroke. However, the upstream kinase and downstream kinase of MAPK signaling pathway are complex and the influencing factors are numerous, the exact role of MAPK signaling pathway in the pathogenesis of ischemic stroke has not been fully elucidated. MAPK signaling molecules in different cell types in the brain respond variously after stroke injury, therefore, the present review article is committed to summarizing the pathological process of different cell types participating in stroke, discussed the mechanism of MAPK participating in stroke. We further elucidated that MAPK signaling pathway molecules can be used as therapeutic targets for stroke, thus promoting the prevention and treatment of stroke.


Viruses ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 257
Author(s):  
Zuzanna Drulis-Kawa ◽  
Barbara Maciejewska

Biofilms are a community of surface-associated microorganisms characterized by the presence of different cell types in terms of physiology and phenotype [...]


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Dvir Gur ◽  
Emily J. Bain ◽  
Kory R. Johnson ◽  
Andy J. Aman ◽  
H. Amalia Pasoili ◽  
...  

AbstractSkin color patterns are ubiquitous in nature, impact social behavior, predator avoidance, and protection from ultraviolet irradiation. A leading model system for vertebrate skin patterning is the zebrafish; its alternating blue stripes and yellow interstripes depend on light-reflecting cells called iridophores. It was suggested that the zebrafish’s color pattern arises from a single type of iridophore migrating differentially to stripes and interstripes. However, here we find that iridophores do not migrate between stripes and interstripes but instead differentiate and proliferate in-place, based on their micro-environment. RNA-sequencing analysis further reveals that stripe and interstripe iridophores have different transcriptomic states, while cryogenic-scanning-electron-microscopy and micro-X-ray diffraction identify different crystal-arrays architectures, indicating that stripe and interstripe iridophores are different cell types. Based on these results, we present an alternative model of skin patterning in zebrafish in which distinct iridophore crystallotypes containing specialized, physiologically responsive, organelles arise in stripe and interstripe by in-situ differentiation.


Sign in / Sign up

Export Citation Format

Share Document