The effects of a new synthetic growth factor on hybridoma cell function

Cytokine ◽  
1989 ◽  
Vol 1 (1) ◽  
pp. 144
2019 ◽  
Vol 15 (2) ◽  
pp. 131-145
Author(s):  
Gajanan V. Sherbet

The mevalonate pathway (also known as the cholesterol biosynthesis pathway) plays a crucial metabolic role in normal cell function as well as in the pathological environment. It leads to the synthesis of sterol and non-sterol isoprenoid biomolecules which subserve a variety of cellular functions. It is known to be deregulated in many disease processes. Statins and bisphosphonates are prominent inhibitors of the mevalonate pathway. They inhibit cell proliferation and activate apoptotic signalling and suppress tumour growth. Statins subdue metastatic spread of tumours by virtue of their ability to suppress invasion and angiogenesis. The induction of autophagy is another feature of statin effects that could contribute to the suppression of metastasis. Herein highlighted are the major signalling systems that statins engage to generate these biological effects. Statins can constrain tumour growth by influencing the expression and function of growth factor and receptor systems. They may suppress epithelial mesenchymal transition with resultant inhibition of cell survival signalling, together with the inhibition of cancer stem cell generation, and their maintenance and expansion. They can suppress ER (oestrogen receptor)-α in breast cancer cells. Statins have been implicated in the activation of the serine/threonine protein kinase AMPK (5' adenosine monophosphate-activated protein) leading to the suppression of cell proliferation. Both statins and bisphosphonates can suppress angiogenic signalling by HIF (hypoxia- inducible factor)-1/eNOS (endothelial nitric oxide synthase) and VEGF (vascular endothelial growth factor)/VEGFR (VEGF receptor). Statins have been linked with improvements in disease prognosis. Also attributed to them is the ability of cancer prevention and reduction of risk of some forms of cancer. The wide spectrum of cancer associated events which these mevalonate inhibitors appear to influence would suggest a conceivable role for them in cancer management. However, much deliberation is warranted in the design and planning of clinical trials, their scope and definition of endpoints, modes risk assessment and the accrual of benefits.


Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1628
Author(s):  
Kaj E. C. Blokland ◽  
Habibie Habibie ◽  
Theo Borghuis ◽  
Greta J. Teitsma ◽  
Michael Schuliga ◽  
...  

Idiopathic pulmonary fibrosis (IPF) is a devastating lung disease with poor survival. Age is a major risk factor, and both alveolar epithelial cells and lung fibroblasts in this disease exhibit features of cellular senescence, a hallmark of ageing. Accumulation of fibrotic extracellular matrix (ECM) is a core feature of IPF and is likely to affect cell function. We hypothesize that aberrant ECM deposition augments fibroblast senescence, creating a perpetuating cycle favouring disease progression. In this study, primary lung fibroblasts were cultured on control and IPF-derived ECM from fibroblasts pretreated with or without profibrotic and prosenescent stimuli, and markers of senescence, fibrosis-associated gene expression and secretion of cytokines were measured. Untreated ECM derived from control or IPF fibroblasts had no effect on the main marker of senescence p16Ink4a and p21Waf1/Cip1. However, the expression of alpha smooth muscle actin (ACTA2) and proteoglycan decorin (DCN) increased in response to IPF-derived ECM. Production of the proinflammatory cytokines C-X-C Motif Chemokine Ligand 8 (CXCL8) by lung fibroblasts was upregulated in response to senescent and profibrotic-derived ECM. Finally, the profibrotic cytokines transforming growth factor β1 (TGF-β1) and connective tissue growth factor (CTGF) were upregulated in response to both senescent- and profibrotic-derived ECM. In summary, ECM deposited by IPF fibroblasts does not induce cellular senescence, while there is upregulation of proinflammatory and profibrotic cytokines and differentiation into a myofibroblast phenotype in response to senescent- and profibrotic-derived ECM, which may contribute to progression of fibrosis in IPF.


2021 ◽  
Author(s):  
Momoko Akiyama ◽  
Ryosuke Ueki ◽  
Masataka Yanagawa ◽  
Mitsuhiro Abe ◽  
Michio Hiroshima ◽  
...  

Blood ◽  
2006 ◽  
Vol 107 (5) ◽  
pp. 1896-1902 ◽  
Author(s):  
Debora Faraone ◽  
Maria S. Aguzzi ◽  
Gianluca Ragone ◽  
Katia Russo ◽  
Maurizio C. Capogrossi ◽  
...  

Previous evidence has shown that platelet-derived growth factor-BB (PDGF-BB) and fibroblast growth factor-2 (FGF-2) directly interact with high affinity, leading to potent reciprocal inhibitory effects on bovine endothelial cells and rat vascular smooth muscle cells. In this study, we report that PDGF-BB inhibits a series of FGF-2–induced events, such as proliferation of human umbilical vein endothelial cells (HUVECs), FGF-2 cellular internalization, phosphorylation of intracellular signaling factors including p38, rac1/cdc42, MKK4, and MKK3/6, and phosphorylation of FGF-receptor 1 (FGF-R1). PDGF-receptor-α (PDGF-Rα) was found to mediate PDGF-BB inhibitory effects because its neutralization fully restored FGF-2 mitogenic activity and internalization. Additional biochemical analyses, coimmunoprecipitation experiments, and FRET analysis showed that FGF-R1 and PDGF-Rα directly interact in vitro and in vivo and that this interaction is somehow increased in the presence of the corresponding ligands FGF-2 and PDGF-BB. These results suggest that FGF-R1/PDGF-Rα heterodimerization may represent a novel endogenous mechanism to modulate the action of these receptors and their ligands and to control endothelial cell function.


1993 ◽  
Vol 136 (2) ◽  
pp. 339-344 ◽  
Author(s):  
A. H. Taylor ◽  
L. J. Millatt ◽  
G. StJ. Whitley ◽  
A. P. Johnstone ◽  
S. S. Nussey

ABSTRACT Basic fibroblast growth factor (bFGF) was quantitated in human primary thyrocyte cultures and thyroid cell lines produced by transfection with pSV3neo. Immunoreactive-bFGF (ir-bFGF) bound to heparin–Sepharose affinity columns eluted with 1·8–2·0 mol NaCl/l and had a molecular weight of approximately 17 000. Recombinant human bFGF in the presence of 5% serum increased the growth of transfected human thyrocytes but not the growth of primary human thyrocytes. Preincubation of cells with up to 100 μg bFGF/l potentiated TSH-stimulated cAMP release from the transfected cells but inhibited release from primary human thyroid cultures. bFGF may be an important modulator of thyroid cell function and growth. Journal of Endocrinology (1993) 136, 339–344


Sign in / Sign up

Export Citation Format

Share Document