The relationship between gas phase and liquid phase electron photodetachment cross sections in the threshold region: Application to anthracene and perfluorobenzene anions

Author(s):  
James K. Baird ◽  
Thomas P. Schuman
2016 ◽  
Vol 7 (2) ◽  
pp. 14-20
Author(s):  
Maribel Ruiz-Botero ◽  
Christian Zuluaga-Bedoya ◽  
Manuel Ospina-Alarcon ◽  
Jose Garcia-Tirado

This paper shows a comparison of three different empirical correlations found in the literature for the estimation of the oxygen transfer coefficient in an aeration pilot plant. To this end, a phenomenological-based semi-physical model (PBSM) of the aeration pilot plant is used. This evaluation tested the relationship between empirical correlations and the oxygen transfer phenomenon from the gas phase to the liquid phase was assessed. The results show that empirical correlations of the oxygen transfer coefficient found in the literature are not based on the knowledge of the physical phenomena, and hence are not suitable to generalize the transference mechanism in other similar processes.


1991 ◽  
Vol 24 (7) ◽  
pp. 277-284 ◽  
Author(s):  
E. Gomólka ◽  
B. Gomólka

Whenever possible, neutralization of alkaline wastewater should involve low-cost acid. It is conventional to make use of carbonic acid produced via the reaction of carbon dioxide (contained in flue gases) with water according to the following equation: Carbon dioxide content in the flue gas stream varies from 10% to 15%. The flue gas stream may either be passed to the wastewater contained in the recarbonizers, or. enter the scrubbers (which are continually sprayed with wastewater) from the bottom in oountercurrent. The reactors, in which recarbonation occurs, have the ability to expand the contact surface between gaseous and liquid phase. This can be achieved by gas phase dispersion in the liquid phase (bubbling), by liquid phase dispersion in the gas phase (spraying), or by bubbling and spraying, and mixing. These concurrent operations are carried out during motion of the disk aerator (which is a patent claim). The authors describe the functioning of the disk aerator, the composition of the wastewater produced during wet gasification of carbide, the chemistry of recarbonation and decarbonation, and the concept of applying the disk aerator so as to make the wastewater fit for reuse (after suitable neutralization) as feeding water in acetylene generators.


1999 ◽  
Vol 39 (4) ◽  
pp. 85-92 ◽  
Author(s):  
J. Behrendt

A mathematical model for nitrification in an aerated fixed bed reactor has been developed. This model is based on material balances in the bulk liquid, gas phase and in the biofilm area. The fixed bed is divided into a number of cells according to the reduced remixing behaviour. A fixed bed cell consists of 4 compartments: the support, the gas phase, the bulk liquid phase and the stagnant volume containing the biofilm. In the stagnant volume the biological transmutation of the ammonia is located. The transport phenomena are modelled with mass transfer formulations so that the balances could be formulated as an initial value problem. The results of the simulation and experiments are compared.


1986 ◽  
Vol 51 (6) ◽  
pp. 1222-1239 ◽  
Author(s):  
Pavel Moravec ◽  
Vladimír Staněk

Expression have been derived in the paper for all four possible transfer functions between the inlet and the outlet gas and liquid steams under the counter-current absorption of a poorly soluble gas in a packed bed column. The transfer functions have been derived for the axially dispersed model with stagnant zone in the liquid phase and the axially dispersed model for the gas phase with interfacial transport of a gaseous component (PDE - AD). calculations with practical values of parameters suggest that only two of these transfer functions are applicable for experimental data evaluation.


1981 ◽  
Vol 46 (8) ◽  
pp. 1941-1946 ◽  
Author(s):  
Karel Setínek

A series of differently crosslinked macroporous 2,3-epoxypropyl methacrylate-ethylenedimethacrylate copolymers with chemically bonded propylsulphonic acid groups were used as catalysts for the kinetic study of reesterification of ethyl acetate by n-propanol in the liquid phase at 52 °C and in the gas phase at 90 °C. Analysis of kinetic data by the method of nonlinear regression for a series of equations of the Langmuir-Hinshelwood type showed that kinetic equations which describe best the course of the reaction are the same as for the earlier studied sulphonated macroporous styrene-divinylbenzene copolymers. Compared types of catalysts differ, however, in the dependence of their activity on the degree of crosslinking of the copolymer used.


2007 ◽  
Vol 17 (4) ◽  
pp. 218-223 ◽  
Author(s):  
K. Shiramizu ◽  
V. Lovric ◽  
A.M.D. Leung ◽  
W.R. Walsh

Purpose To mix high dose antibiotic powder to the bone cement more easily, Hanssen et al reported mixing the antibiotics with the cement during its liquid phase but made no comments about the relevance of cement viscosity and antibiotic distribution. The purpose of this study was to investigate the effect of the cement mixing technique and cement viscosity on the antibiotics distribution in a cement spacer model. Methods Thirty cylindrical models from three groups were examined. Group A was made by mixing the antibiotics with medium viscosity cement prior to adding the liquid monomer (traditional technique). Group B was made by mixing the antibiotics with medium viscosity cement during its liquid phase (Hanssen's technique). Group C was made by traditional technique with low viscosity cement. In all groups 2 g of tetracycline was used. Three 0.1 mm thick cross sections from each spacer model were examined under the fluorescent microscope. The fluorescent spots of tetracycline were calculated automatically in pixels. To evaluate the distribution of the antibiotics in the spacer model, we selected the cross section with the highest number of pixels and the one with the lowest number of pixels from each of the three cross sections and calculated the difference between them. The distribution disequilibrium was compared between group A and B, A and C. Results No significant difference was observed in either comparison. Conclusion The Hanssen's mixing technique can be used when using high dose antibiotics, and either medium or low viscosity cement could be used in terms of antibiotic distribution.


1968 ◽  
Vol 46 (20) ◽  
pp. 3235-3240 ◽  
Author(s):  
Gordon R. Freeman ◽  
E. Diane Stover

The initial yields of the major products of the gamma radiolysis of liquid methylcyclopentane (MCP) at 25° are: G(H2) = 4.2, G(1-methylcyclopentene plus methylenecyclopentane) = 2.7, G(3- plus 4-methyl-cyclopentene) = 1.0, G(open chain hexene) = 1.0, and G(bimethylcyclopentyl) = 0.9. The effects of scavengers on the product yields are reported and the mechanism is discussed.The liquid phase radiolytic decompositions of cyclohexane (CH), methylcyclohexane (MCH), cyclopentane (CP), and MCP are compared. The net amount of C—C bond cleavage is much greater in the five-membered than in the six-membered rings. Methyl substitution on the ring reduces G(H2) by about one unit, mainly because of the formation of a type of ion (QH+) that does not yield hydrogen when neutralized by an electron. The QH+ type ions are formed in MCH and MCP, but not in CH and CP. In all the systems, another type of ion (N+) that does not yield hydrogen when neutralized by an electron is formed with a G value of about unity. The type of ion (PH+) that does yield hydrogen when neutralized by an electron has a G value of 3.4 in CH and CP, but only 2.0 in MCP. It is concluded that G(total ionization) is in the vicinity of 4.4 in the liquid compounds, virtually the same as the gas phase values.


Catalysts ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 430 ◽  
Author(s):  
Elnaz Bahadori ◽  
Antonio Tripodi ◽  
Alberto Villa ◽  
Carlo Pirola ◽  
Laura Prati ◽  
...  

The photoreduction of CO2 is an intriguing process which allows the synthesis of fuels and chemicals. One of the limitations for CO2 photoreduction in the liquid phase is its low solubility in water. This point has been here addressed by designing a fully innovative pressurized photoreactor, allowing operation up to 20 bar and applied to improve the productivity of this very challenging process. The photoreduction of CO2 in the liquid phase was performed using commercial TiO2 (Evonink P25), TiO2 obtained by flame spray pyrolysis (FSP) and gold doped P25 (0.2 wt% Au-P25) in the presence of Na2SO3 as hole scavenger (HS). The different reaction parameters (catalyst concentration, pH and amount of HS) have been addressed. The products in liquid phase were mainly formic acid and formaldehyde. Moreover, for longer reaction time and with total consumption of HS, gas phase products formed (H2 and CO) after accumulation of significant number of organic compounds in the liquid phase, due to their consecutive photoreforming. Enhanced CO2 solubility in water was achieved by adding a base (pH = 12–14). In basic environment, CO2 formed carbonates which further reduced to formaldehyde and formic acid and consequently formed CO/CO2 + H2 in the gas phase through photoreforming. The deposition of small Au nanoparticles (3–5 nm) (NPs) onto TiO2 was found to quantitatively influence the products distribution and increase the selectivity towards gas phase products. Significant energy storage in form of different products has been achieved with respect to literature results.


2017 ◽  
Vol 25 (2) ◽  
pp. 147-160
Author(s):  
Paweł Lorkowski ◽  
Bronisław Gosowski

Abstract The paper presents experimental and numerical studies to determine the equivalent second moment of area of the uniform torsion of the two-chord steel single laced members. The members are used as poles of railway traction network gates, and steel columns of framed buildings as well. The stiffness of uniform torsion of this kind of columns allows to the determine the critical loads of the spatial stability. The experimental studies have been realized on a single - span members with rotation arrested at their ends, loaded by a torque applied at the mid-span. The relationship between angle of rotation of the considered cross-section and the torque has been determined. Appropriate numerical model was created in the ABAQUS program, based on the finite element method. A very good compatibility has been observed between experimental and numerical studies. The equivalent second moment of area of the uniform torsion for analysed members has been determined by comparing the experimental and analytical results to those obtained from differential equation of non-uniform torsion, based on Vlasov’s theory. Additionally, the parametric analyses of similar members subjected to the uniform torsion, for the richer range of cross-sections have been carried out by the means of SOFiSTiK program. The purpose of the latter was determining parametrical formulas for calculation of the second moment of area of uniform torsion.


Sign in / Sign up

Export Citation Format

Share Document