HIGH TEMPERATURE STRENGTH AND DELAYED FRACTURE IN CERAMIC MATERIALS

Author(s):  
J.C.V. RUMSEY ◽  
A.L. ROBERTS
2007 ◽  
Vol 14 (01) ◽  
pp. 117-122 ◽  
Author(s):  
JIEGUANG SONG ◽  
LIANMENG ZHANG ◽  
JUNGUO LI ◽  
JIANRONG SONG

ZrB 2 has some excellent performances, but it is easily oxidized at high temperatures to impact the high-temperature strength, which restricts its applied range. To protect from the oxidization and improve the strength of ZrB 2 at high temperature, the surface of ZrB 2 particles is coated with the Al ( OH )3– Y ( OH )3 shell to synthesize ZrB 2@ Al ( OH )3– Y ( OH )3 core–shell composite particles. Through the thermodynamic and kinetic analyses of the heterogeneous nucleation and homogeneous nucleation, the concentration product of precursor ion ( Y 3+ or Al 3+) and OH - (Qi) must be greater than the solubility product (K sp ), respectively; the conditions of Y 3+ and Al 3+ are reached to produce Al ( OH )3– Y ( OH )3 shell on the ZrB 2 surface between the Y 3+ line and the AlO 2- line. Through TEM and XRD analyses, ZrB 2@ Al ( OH )3– Y ( OH )3 core–shell composite particles are successfully synthesized by the co-precipitation method, the shell layer quality is better at pH = 9, which established the foundation for preparing high-performance YAG / ZrB 2 and Al 2 O 3– YAG / ZrB 2 multiphase ceramic materials.


2008 ◽  
Vol 15 (05) ◽  
pp. 581-585 ◽  
Author(s):  
JIE-GUANG SONG ◽  
GANG-CHANG JI ◽  
SHI-BIN LI ◽  
LIAN-MENG ZHANG

Silicon nitride ( Si 3 N 4) has attracted substantial interest because of its extreme chemical and physical properties, but the sintering densification of Si 3 N 4 is difficult, and it is easily oxidized in the high-temperature air to impact high-temperature strength, which restricts its applied range. In order to decrease the oxidization and improve the strength of Si 3 N 4 at high temperature, the surface of Si 3 N 4 is coated with Al ( OH )3 and Y ( OH )3 to synthesis Si 3 N 4@ Al ( OH )3– Y ( OH )3 core-shell composite particles. Through TEM, XRD, and BET analysis, when pH is about 9, Si 3 N 4@ Al ( OH )3– Y ( OH )3 core-shell composite particles are successfully synthesized by co-precipitation methods. Coating layer is about 200 nm, which is compaction and conformability. Dispersion of coated Si 3 N 4 with Al ( OH )3 and Y ( OH )3 particles are very good. Synthesis of Si 3 N 4@ Al ( OH )3– Y ( OH )3 core-shell composite powder will lay the foundation for preparing high-performance YAG/Si 3 N 4 multiphase ceramic materials.


MRS Bulletin ◽  
1995 ◽  
Vol 20 (2) ◽  
pp. 42-45 ◽  
Author(s):  
S.S. Shinozaki

Application of silicon carbide (SiC) as a structural material has been limited thus far by its low fracture toughness, even though, in comparison to other ceramic materials, SiC has superior high-temperature strength and creep, wear, corrosion, and oxidation resistance. For automotive applications, a higher fracture toughness is required. For example, the brittleness and catastrophic fracture behavior of SiC materials have resulted in limited use in automobile exhaust-valve systems and turbocharger rotors. High-density SiC bodies can be produced by a pressureless sintering process. However, the sintered bodies often include flaws which are related to processing, primarily, the presence of agglomerates and crystallographic defects in the starting powders. The importance of grain size and shape refinement in the improvement of mechanical properties has been recognized, and thus, processing procedures and sintering aid compositions have been examined extensively. However, one of the key factors is the “as-received” powder characterization (distribution of grain sizes, polytypes, and impurities) for producing sintered bodies of SiC with consistent physical properties.A complexity in SiC materials is that SiC can form various crystal structures having essentially the same chemical composition but a differing number of stacking layers in the unit cell. This is commonly called a polytype. There is only one crystal structure with cubic symmetry, which is identified as 3C or the β-phase. At high temperature, the β-phase transforms to α-phases with hexagonal or rhombohedral symmetry, with 4H, 15R, and 6H (Ramsdell notation) being the major polytypes observed in SiC materials. Preference of the polytype selection during the β- to α-phase transformation is dependent on the chemistry of the sintering aids and metallic impurities in the grain boundaries.


1995 ◽  
Vol 44 (501) ◽  
pp. 710-714
Author(s):  
Masato MURATA ◽  
Wataru TAKAHARA ◽  
Yoshihiko MUKAI ◽  
Jun-ichi SATO ◽  
Takeshi DEGUCHI

2021 ◽  
Author(s):  
David Fisher

MAX Phase Materials are uniquely structured carbide and nitride materials which combine the rigidity, oxidation-resistance and high-temperature strength of ceramic materials with such metallic properties as good machinability, thermal-shock resistance, damage-tolerance and good transport properties. Potential applications include microelectronic layers, coatings for electrical contacts, thermal shock-resistant refractories, high-temperature heating elements, neutron-irradiation resistant nuclear applications, thermal barriers, protective aerospace coatings, and bio-compatible materials. The book reviews theoretical and experimental research up to early 2021 and references 185 original resources with their direct web links for in-depth reading.


Author(s):  
M.S. Grewal ◽  
S.A. Sastri ◽  
N.J. Grant

Currently there is a great interest in developing nickel base alloys with fine and uniform dispersion of stable oxide particles, for high temperature applications. It is well known that the high temperature strength and stability of an oxide dispersed alloy can be greatly improved by appropriate thermomechanical processing, but the mechanism of this strengthening effect is not well understood. This investigation was undertaken to study the dislocation substructures formed in beryllia dispersed nickel alloys as a function of cold work both with and without intermediate anneals. Two alloys, one Ni-lv/oBeo and other Ni-4.5Mo-30Co-2v/oBeo were investigated. The influence of the substructures produced by Thermo-Mechanical Processing (TMP) on the high temperature creep properties of these alloys was also evaluated.


Author(s):  
B. J. Hockey

Ceramics, such as Al2O3 and SiC have numerous current and potential uses in applications where high temperature strength, hardness, and wear resistance are required often in corrosive environments. These materials are, however, highly anisotropic and brittle, so that their mechanical behavior is often unpredictable. The further development of these materials will require a better understanding of the basic mechanisms controlling deformation, wear, and fracture.The purpose of this talk is to describe applications of TEM to the study of the deformation, wear, and fracture of Al2O3. Similar studies are currently being conducted on SiC and the techniques involved should be applicable to a wide range of hard, brittle materials.


Author(s):  
D. R. Clarke ◽  
G. Thomas

Grain boundaries have long held a special significance to ceramicists. In part, this has been because it has been impossible until now to actually observe the boundaries themselves. Just as important, however, is the fact that the grain boundaries and their environs have a determing influence on both the mechanisms by which powder compaction occurs during fabrication, and on the overall mechanical properties of the material. One area where the grain boundary plays a particularly important role is in the high temperature strength of hot-pressed ceramics. This is a subject of current interest as extensive efforts are being made to develop ceramics, such as silicon nitride alloys, for high temperature structural applications. In this presentation we describe how the techniques of lattice fringe imaging have made it possible to study the grain boundaries in a number of refractory ceramics, and illustrate some of the findings.


Author(s):  
E. R. Kimmel ◽  
H. L. Anthony ◽  
W. Scheithauer

The strengthening effect at high temperature produced by a dispersed oxide phase in a metal matrix is seemingly dependent on at least two major contributors: oxide particle size and spatial distribution, and stability of the worked microstructure. These two are strongly interrelated. The stability of the microstructure is produced by polygonization of the worked structure forming low angle cell boundaries which become anchored by the dispersed oxide particles. The effect of the particles on strength is therefore twofold, in that they stabilize the worked microstructure and also hinder dislocation motion during loading.


Author(s):  
Gareth Thomas

Silicon nitride and silicon nitride based-ceramics are now well known for their potential as hightemperature structural materials, e.g. in engines. However, as is the case for many ceramics, in order to produce a dense product, sintering additives are utilized which allow liquid-phase sintering to occur; but upon cooling from the sintering temperature residual intergranular phases are formed which can be deleterious to high-temperature strength and oxidation resistance, especially if these phases are nonviscous glasses. Many oxide sintering additives have been utilized in processing attempts world-wide to produce dense creep resistant components using Si3N4 but the problem of controlling intergranular phases requires an understanding of the glass forming and subsequent glass-crystalline transformations that can occur at the grain boundaries.


Sign in / Sign up

Export Citation Format

Share Document