Role of Whey Proteins in Food Packaging

Author(s):  
Theeranun Janjarasskul ◽  
Kanitha Tananuwong
Keyword(s):  
2015 ◽  
Vol 117 (3) ◽  
pp. 1122-1135 ◽  
Author(s):  
Fredrik Fernqvist ◽  
Annika Olsson ◽  
Sara Spendrup

Purpose – The purpose of this paper is to explore consumer views on different aspects of packaging, exemplified by a common product in the fruit and vegetable category and to identify advantages and disadvantages perceived by consumers purchasing packaged or unpackaged products. Design/methodology/approach – Three focus group interviews were conducted. Thematic analysis based on theory was performed. The findings were categorised into nine themes. Findings – Consumer views on packaging aspects were revealed, covering: packaging material; pack size; protection and preservation; convenience; price; communication and information; ethical perspectives; novelty and innovation; and advantages and disadvantages of packaged and unpackaged products. Research limitations/implications – The study adds to present knowledge on the role of packaging in consumers’ food choices. The qualitative analysis identified areas for further research through quantitative methods. Practical implications – Challenges in communicating the consumer benefits of packaging and ways to improve the attractiveness of items in the fresh produce category were identified. The results can potentially assist in improving food packaging design practice to the mutual benefit of consumers and suppliers. Originality/value – Fruit and vegetables is generally a category with weak branding and low levels of packaging. This study examined the role of packaging in a category with substantial opportunities for differentiation and increasing consumer value. The results can be applied in immediate practice and/or serve as a basis for further research.


2022 ◽  
Vol 4 (1) ◽  
pp. 013-018
Author(s):  
Mohini Chandrashekhar Upadhye ◽  
Mohini Chetan Kuchekar ◽  
Rohini Revansiddhappa Pujari ◽  
Nutan Uttam Sable

Biopolymers are compounds prepared by using various living organisms, including plants. These are composed of repeated units of the same or similar structure (monomers) linked together. Rubber, starch, cellulose, proteins and DNA, RNA, chitin, and peptides are some of the examples of natural biopolymers. Biopolymers are a diverse and remarkably versatile class of materials that are either produced by biological systems or synthesize from biological sources. Biopolymers are used in pharmaceutical industry and also in food industry.Naturally derived polymers are also used for conditioning benefits in hair and skin care. Biopolymers have various applications in medicine, food, packaging, and petroleum industries. This review article is focused on various aspects of biopolymers with a special emphasis on role of biopolymers in green nanotechnology and agriculture.


Author(s):  
Saira Sehar ◽  
Amiza Amiza ◽  
I. H Khan

Nanotechnology advancement leads to development of antimicrobial agents like ZnO nanoparticles. These nanoparticle have their main applications in food packaging. when these nanoparticles incorporate into the food surface, it will kill all bacterias residing on the surface and food become free of bacteria. In this way, food can be stored for a long time because its shelf life is improved. Antimicrobial activity of ZnO nanoparticles can be improved by increasing surface area, reducing particle size and large concentration of ZnO –NPS. Antimicrobial activity increases by increasing intensity of UV light. As UV light fall on ZnO nanoparticles, it increases ZnO surface area and hence anrtimicrobial activity will be increased. Exact mechanism of Antimicrobial activity is still unknown but some processes have been presented.


2001 ◽  
Vol 68 (3) ◽  
pp. 471-481 ◽  
Author(s):  
CATHERINE SCHORSCH ◽  
DEBORAH K. WILKINS ◽  
MALCOLM G. JONES ◽  
IAN T. NORTON

The aim of the present work was to investigate the role of whey protein denaturation on the acid induced gelation of casein. This was studied by determining the effect of whey protein denaturation both in the presence and absence of casein micelles. The study showed that milk gelation kinetics and gel properties are greatly influenced by the heat treatment sequence. When the whey proteins are denatured separately and subsequently added to casein micelles, acid-induced gelation occurs more rapidly and leads to gels with a more particulated microstructure than gels made from co-heated systems. The gels resulting from heat-treatment of a mixture of pre-denatured whey protein with casein micelles are heterogeneous in nature due to particulates formed from casein micelles which are complexed with denatured whey proteins and also from separate whey protein aggregates. Whey proteins thus offer an opportunity not only to control casein gelation but also to control the level of syneresis, which can occur.


2020 ◽  
Vol 367 (3) ◽  
Author(s):  
Natalia Garcia-Gonzalez ◽  
Roberta Prete ◽  
Monia Perugini ◽  
Carmine Merola ◽  
Natalia Battista ◽  
...  

ABSTRACT Nowadays, the interest in the role of dietary components able to influence the composition and the activity of the intestinal microbiota and, consequently, to modulate the risk of genotoxicity and colon cancer is increasing in the scientific community. Within this topic, the microbial ability to have a protective role at gastrointestinal level by counteracting the biological activity of genotoxic compounds, and thus preventing the DNA damage, is deemed important in reducing gut pathologies and is considered a new tool for probiotics and functional foods. A variety of genotoxic compounds can be found in the gut and, besides food-related mutagens and other DNA-reacting compounds, there is a group of pollutants commonly used in food packaging and/or in thousands of everyday products called endocrine disruptors (EDs). EDs are exogenous substances that alter the functions of the endocrine system through estrogenic and anti-estrogenic activity, which interfere with normal hormonal function in human and wildlife. Thus, this paper summarizes the main applications of probiotics, mainly lactobacilli, as a bio-protective tool to counteract genotoxic and mutagenic agents, by biologically inhibiting the related DNA damage in the gut and highlights the emerging perspectives to enlarge and further investigate the microbial bio-protective role at intestinal level.


2012 ◽  
Vol 41 (6) ◽  
pp. 368-379 ◽  
Author(s):  
Preeti Singh ◽  
Sven Saengerlaub ◽  
Ali Abas Wani ◽  
Horst‐Christian Langowski

2010 ◽  
Vol 93 (5) ◽  
pp. 1900-1909 ◽  
Author(s):  
M. Kelly ◽  
B. Vardhanabhuti ◽  
P. Luck ◽  
M.A. Drake ◽  
J. Osborne ◽  
...  

1996 ◽  
Vol 63 (1) ◽  
pp. 35-48 ◽  
Author(s):  
Andrew J. R. Law

SummaryThe effects of heat treatment and subsequent acidification of milk on the distribution of proteins, Ca and Pi, between the serum and micellar phases were examined using ultracentrifugation. After heating milk at 85 °C for 10 min, and storing for 22 h at 4, 20 or 30 °C, there was a marked increase in the concentration of κ-casein in the serum. At 4 and 20 °C there was also slightly more β-casein in the serum from heat-treated milk than in that from the corresponding raw milk. The whey proteins were extensively denatured, and were almost equally distributed between the supernatants and micellar pellets. After storage for 22 h the distribution of Ca and Pi between soluble and colloidal phases in heat-treated milk was similar to that in raw milk. After acidifying heat-treated milk by the addition of glucono-δ-lactone and storing for 22 h at 4, 20 or 30 °C there was progressive solubilization of colloidal calcium phosphate with decreasing pH, and at pH 5·0 almost all of the Ca and Pi was present in the serum. At 20 °C, and even more so at 4 °C, serum concentrations of the individual caseins increased considerably with decreasing pH, reaching maximum levels of about 25 and 40% of the total casein at pH 5·7 and 5·5 respectively, and then decreasing rapidly at lower pH. Compared with raw milk, maximum dissociation in heat-treated milks stored at 4 and 20 °C occurred at higher pH, and the overall levels of dissociation of individual caseins from the micelles were lower. At 30 °C, the concentrations of individual caseins in the serum of heat-treated milk decreased steadily as the pH was reduced, and did not show the slight increase found previously for raw milk. The role of the denatured whey proteins in interacting with κ-casein and in promoting aggregation of the micelles on acidification is discussed.


Sign in / Sign up

Export Citation Format

Share Document