Mitochondrial Morphology and Function

Muscle ◽  
2012 ◽  
pp. 217-229
Author(s):  
Fabio Di Lisa ◽  
Luca Scorrano
Author(s):  
Jenny L Gonzalez-Armenta ◽  
Ning Li ◽  
Rae-Ling Lee ◽  
Baisong Lu ◽  
Anthony J A Molina

Abstract Heterochronic parabiosis models have been utilized to demonstrate the role of blood-borne circulating factors in systemic effects of aging. In previous studies, heterochronic parabiosis has shown positive effects across multiple tissues in old mice. More recently, a study demonstrated old blood had a more profound negative effect on muscle performance and neurogenesis of young mice. In this study, we used heterochronic parabiosis to test the hypothesis that circulating factors mediate mitochondrial bioenergetic decline, a well-established biological hallmark of aging. We examined mitochondrial morphology, expression of mitochondrial complexes, and mitochondrial respiration from skeletal muscle of mice connected as heterochronic pairs, as well as young and old isochronic controls. Our results indicate that young heterochronic mice had significantly lower total mitochondrial content and on average had significantly smaller mitochondria compared to young isochronic controls. Expression of complex IV followed a similar pattern: young heterochronic mice had a trend for lower expression compared to young isochronic controls. Additionally, respirometric analyses indicate that young heterochronic mice had significantly lower complex I, complex I + II, and maximal mitochondrial respiration and a trend for lower complex II-driven respiration compared to young isochronic controls. Interestingly, we did not observe significant improvements in old heterochronic mice compared to old isochronic controls, demonstrating the profound deleterious effects of circulating factors from old mice on mitochondrial structure and function. We also found no significant differences between the young and old heterochronic mice, demonstrating that circulating factors can be a driver of age-related differences in mitochondrial structure and function.


2020 ◽  
Vol 22 (1) ◽  
pp. 91
Author(s):  
Vanina Romanello

Sarcopenia is a chronic disease characterized by the progressive loss of skeletal muscle mass, force, and function during aging. It is an emerging public problem associated with poor quality of life, disability, frailty, and high mortality. A decline in mitochondria quality control pathways constitutes a major mechanism driving aging sarcopenia, causing abnormal organelle accumulation over a lifetime. The resulting mitochondrial dysfunction in sarcopenic muscles feedbacks systemically by releasing the myomitokines fibroblast growth factor 21 (FGF21) and growth and differentiation factor 15 (GDF15), influencing the whole-body homeostasis and dictating healthy or unhealthy aging. This review describes the principal pathways controlling mitochondrial quality, many of which are potential therapeutic targets against muscle aging, and the connection between mitochondrial dysfunction and the myomitokines FGF21 and GDF15 in the pathogenesis of aging sarcopenia.


1996 ◽  
Vol 44 (12) ◽  
pp. 1363-1372 ◽  
Author(s):  
M Poot ◽  
Y Z Zhang ◽  
J A Krämer ◽  
K S Wells ◽  
L J Jones ◽  
...  

Investigation of mitochondrial morphology and function has been hampered because photostable, mitochondrion-specific stains that are retained in fixed, permeabilized cells have not been available. We found that in live cell preparations, the CMXRos and H2-CMXRos dyes were more photostable than rhodamine 123. In addition, fluorescence and morphology of mitochondria stained with the CMXRos and CMXRos-H2 dyes were preserved even after formaldehyde fixation and acetone permeabilization. Using epifluorescence microscopy, we showed that CMXRos and H2-CMXRos dye fluorescence fully co-localized with antibodies to subunit I of cytochrome c oxidase, indicating that the dyes specifically stain mitochondria. Confocal microscopy of these mitochondria yielded colored banding patterns, suggesting that these dyes and the mitochondrial enzyme localize to different suborganellar regions. Therefore, these stains provide powerful tools for detailed analysis of mitochondrial fine structure. We also used poisons that decrease mitochondrial membrane potential and an inhibitor of respiration complex II to show by flow cytometry that the fluorescence intensity of CMXRos and H2-CMXRos dye staining responds to changes in mitochondrial membrane potential and function. Hence, CMXRos has the potential to monitor changes in mitochondrial function. In addition, CMXRos staining was used in conjunction with spectrally distinct fluorescent probes for the cell nucleus and the microtubule network to concomitantly evaluate multiple features of cell morphology.


2021 ◽  
Author(s):  
Antentor Hinton ◽  
Prasanna Katti ◽  
Trace A. Christensen ◽  
Margaret Mungai ◽  
Jianqiang Shao ◽  
...  

Mitochondrial dynamics and morphology (fission, fusion, and the formation of nanotunnels) are very sensitive to the cellular environment and may be adversely affected by oxidative stress, changes in calcium levels, and hypoxia. Investigating the precise relationship between the organelle structure and function requires methods that can adequately preserve the structure while providing accurate, quantitative measurements of mitochondrial morphological attributes. Here, we demonstrate a practical approach for preserving and measuring fine structural changes in two-dimensional electron micrographs, obtained using transmission electron microscopy, highlighting the specific advantages of this technique. Additionally, this study defines a set of quantifiable metrics that can be applied to measure mitochondrial architecture and other organellar structures. Finally, we validated specimen preparation methods that avoid the introduction of morphological artifacts in mitochondrial appearance that do not require whole-animal perfusion.


2019 ◽  
Author(s):  
Kaylee Steen ◽  
Desu Chen ◽  
Fengrong Wang ◽  
Song Chen ◽  
Surinder Kumar ◽  
...  

AbstractMitochondria fulfill essential roles in ATP production, metabolic regulation, calcium signaling, generation of reactive oxygen species (ROS) and additional determinants of cellular health. Recent studies have highlighted a role for mitochondria during cell differentiation, including in skin epidermis. The observation of oxidative stress in keratinocytes from Krt16 null mouse skin, a model for pachyonychia congenita (PC)-associated palmoplantar keratoderma, prompted us to examine the role of Keratin (K) 16 protein and its partner K6 in regulating the structure and function of mitochondria. Electron microscopy revealed major anomalies in mitochondrial ultrastructure in late stage, E18.5, Krt6a/Krt6b null embryonic mouse skin. Follow-up studies utilizing biochemical, metabolic, and live imaging readouts showed that, relative to controls, skin keratinocytes null for Krt6a/Krt6b or Krt16 exhibit elevated ROS, reduced mitochondrial respiration, intracellular distribution differences and altered movement of mitochondria within the cell. These findings highlight a novel role for K6 and K16 in regulating mitochondrial morphology, dynamics and function and shed new light on the causes of oxidative stress observed in PC and related keratin-based skin disorders.


2009 ◽  
Vol 15 ◽  
pp. S171-S172
Author(s):  
Z. Huang ◽  
R. Akundi ◽  
L. Boock ◽  
X. Liu ◽  
H. Zhu ◽  
...  

Genes ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 310 ◽  
Author(s):  
Weronika Rzepnikowska ◽  
Joanna Kaminska ◽  
Dagmara Kabzińska ◽  
Andrzej Kochański

The question of whether a newly identified sequence variant is truly a causative mutation is a central problem of modern clinical genetics. In the current era of massive sequencing, there is an urgent need to develop new tools for assessing the pathogenic effect of new sequence variants. In Charcot-Marie-Tooth disorders (CMT) with their extreme genetic heterogeneity and relatively homogenous clinical presentation, addressing the pathogenic effect of rare sequence variants within 80 CMT genes is extremely challenging. The presence of multiple rare sequence variants within a single CMT-affected patient makes selection for the strongest one, the truly causative mutation, a challenging issue. In the present study we propose a new yeast-based model to evaluate the pathogenic effect of rare sequence variants found within the one of the CMT-associated genes, GDAP1. In our approach, the wild-type and pathogenic variants of human GDAP1 gene were expressed in yeast. Then, a growth rate and mitochondrial morphology and function of GDAP1-expressing strains were studied. Also, the mutant GDAP1 proteins localization and functionality were assessed in yeast. We have shown, that GDAP1 was not only stably expressed but also functional in yeast cell, as it influenced morphology and function of mitochondria and altered the growth of a mutant yeast strain. What is more, the various GDAP1 pathogenic sequence variants caused the specific for them effect in the tests we performed. Thus, the proposed model is suitable for validating the pathogenic effect of known GDAP1 mutations and may be used for testing of unknown sequence variants found in CMT patients.


2020 ◽  
Vol 9 (11) ◽  
pp. 3582
Author(s):  
Antoine H. Chaanine ◽  
Thierry H. LeJemtel ◽  
Patrice Delafontaine

The mitochondria are mostly abundant in the heart, a beating organ of high- energy demands. Their function extends beyond being a power plant of the cell including redox balance, ion homeostasis and metabolism. They are dynamic organelles that are tethered to neighboring structures, especially the endoplasmic reticulum. Together, they constitute a functional unit implicated in complex physiological and pathophysiological processes. Their topology in the cell, the cardiac myocyte in particular, places them at the hub of signaling and calcium homeostasis, making them master regulators of cell survival or cell death. Perturbations in mitochondrial function play a central role in the pathophysiology of myocardial remodeling and progression of heart failure. In this minireview, we summarize important pathophysiological mechanisms, pertaining to mitochondrial morphology, dynamics and function, which take place in compensated hypertrophy and in progression to overt systolic heart failure. Published work in the last few years has expanded our understanding of these important mechanisms; a key prerequisite to identifying therapeutic strategies targeting mitochondrial dysfunction in heart failure.


Cells ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 1119 ◽  
Author(s):  
Hur ◽  
Kang ◽  
Kim ◽  
Lee ◽  
Kim ◽  
...  

The loss of mitochondrial function impairs intracellular energy production and potentially results in chronic liver disease. Increasing evidence suggests that mitochondrial dysfunction in hepatocytes contributes to the activation of hepatic stellate cells (HSCs), thereby resulting in hepatic fibrogenesis. High-temperature requirement protein A2 (HtrA2/Omi), a mitochondrial serine protease with various functions, is responsible for quality control in mitochondrial homeostasis. However, little information is available regarding its role in mitochondrial damage during the development of liver fibrosis. This study examined whether HtrA2/Omi regulates mitochondrial homeostasis in hepatocyte during the development of hepatic fibrogenesis. In this study, we demonstrated that HtrA2/Omi expression considerably decreased in liver tissues from the CCl4-induced liver fibrotic mice model and from patients with liver cirrhosis. Knockdown of HtrA2/Omi in hepatocytes induced the accumulation of damaged mitochondria and provoked mitochondrial reactive oxygen species (mtROS) stress. We further show that the damaged mtDNA isolated from HtrA2/Omi-deficient hepatocytes as a form of damage-associated molecular patterns can induce HSCs activation. Moreover, we found that motor neuron degeneration 2-mutant mice harboring the missense mutation Ser276Cys in the protease domain of HtrA2/Omi displayed altered mitochondrial morphology and function, which increased oxidative stress and promoted liver fibrosis. Conversely, the overexpression of HtrA2/Omi via hydrodynamics-based gene transfer led to the antifibrotic effects in CCl4-induced liver fibrosis mice model through decreasing collagen accumulation and enhancing anti-oxidative activity by modulating mitochondrial homeostasis in the liver. These results suggest that suppressing HtrA2/Omi expression promotes hepatic fibrogenesis via modulating mtROS generation, and these novel mechanistic insights involving the regulation of mitochondrial homeostasis by HtrA2/Omi may be of importance for developing new therapeutic strategies for hepatic fibrosis.


Sign in / Sign up

Export Citation Format

Share Document