Synthesis, characterization and hygrothermal behaviour of mesoporous silica high-performance desiccants for relative humidity buffering in closed environments

2012 ◽  
Vol 60 (1) ◽  
pp. 89-101 ◽  
Author(s):  
M.R. Hall ◽  
S.C.E. Tsang ◽  
S.P. Casey ◽  
M.A. Khan ◽  
H. Yang
2015 ◽  
Vol 3 (38) ◽  
pp. 19294-19298 ◽  
Author(s):  
Xichang Bao ◽  
Qianqian Zhu ◽  
Meng Qiu ◽  
Ailing Yang ◽  
Yujin Wang ◽  
...  

High-quality CH3NH3PbI3 perovskite films were directly prepared on simple treated ITO glass in air under a relative humidity of lower than 30%.


2017 ◽  
Vol 74 (19) ◽  
pp. 1579-1583 ◽  
Author(s):  
Abdel Naser Zaid ◽  
Rania Shtayah ◽  
Ayman Qadumi ◽  
Mashour Ghanem ◽  
Rawan Qedan ◽  
...  

Abstract Purpose The stability of an extemporaneously prepared rosuvastatin suspension stored over 30 days under various storage conditions was evaluated. Methods Rosuvastatin suspension was extemporaneously prepared using commercial rosuvastatin tablets as the source of active pharmaceutical ingredient. The organoleptic properties, dissolution profile, and stability of the formulation were investigated. For the stability studies, samples of the suspension were stored under 2 storage conditions, room temperature (25 °C and 60% relative humidity) and accelerated stability chambers (40 °C and 75% relative humidity). Viscosity, pH, organoleptic properties, and microbial contamination were evaluated according to the approved specifications. High-performance liquid chromatography was used for the analysis and quantification of rosuvastatin in selected samples. Microbiological investigations were also conducted. Results The prepared suspension showed acceptable organoleptic properties. It showed complete release of rosuvastatin within 15 minutes. The pH of the suspension was 9.8, which remained unchanged during the stability studies. The microbiological investigations demonstrated that the preparation was free of any microbial contamination. In addition, the suspension showed stability within at least the period of use of a 100-mL rosuvastatin bottle. Conclusion Extemporaneously prepared rosuvastatin 20-mg/mL suspension was stable for 30 days when stored at room temperature.


2021 ◽  
Vol 11 ◽  
Author(s):  
Pei-Jian Zhang ◽  
Meng-Dong Liu ◽  
Fang-Yong Fan ◽  
Ke-Xia Liu

PurposeCholangiocarcinoma (CCA) is a malignant tumor with a high incidence. The therapeutic effect of conventional chemotherapy and radiotherapy is not obvious. Photodynamic therapy (PDT) is an ideal modality to fight cancer, and the nature of photosensitizer limits its application in clinical therapy. The aim of this study was to explore a novel mode of drug delivery for the intervention of bile duct cancer.MethodsOxaliplatin and photosensitizer HCE6 were loaded with mesoporous silica nanoparticles (MSNs) to synthesize Oxaliplatin/HCE6-MSNs (OH-MSNs); the structure of OH-MSNs was characterized by transmission electron microscopy (TEM) and dynamic light scattering (DLS), the drug release rate was detected by high performance liquid chromatography; the cellular activity, apoptosis level, and the expression levels of intracellular apoptosis and autophagy-related factors of OH-MSNs on cholangiocarcinoma cells were observed by CCK-8, flow cytometry, colony formation assay, and Western blot; the effects of OH-MSNs on cholangioma growth were observed by mouse tumor formation, immunohistochemistry, and tissue Tunel staining.ResultsThe release of OH-MSNs to Oxaliplatin was enhanced under acidic conditions; compared with Oxaliplatin or O-MSNs, OH-MSNs showed more potent killing effects against cholangiocarcinoma cells (P<0.05), and exerted notably inhibitory effects on the activity of cholangiocarcinoma cells (P<0.05), promoted their apoptosis (P<0.05), and greatly facilitated the expression of pro-apoptotic factors and autophagic factors in cholangiocarcinoma cells (P<0.05), and markedly inhibited the expression of anti-apoptotic factors and autophagic inhibitory factors (P<0.05); moreover, OH-MSNs could significantly suppress the growth of mouse cholangiocarcinoma (P<0.05) and induce apoptosis of tumor cells compared with Oxaliplatin or O-MSNs (P<0.05).ConclusionMSNs loading greatly increases the killing effect of Oxaliplatin on cholangiocarcinoma cells and upgrades the autophagic level of cholangiocarcinoma cells, while OH-MSNs synthesized by further loading HCE6 have a more apparent killing effect on cholangiocarcinoma cells.


2019 ◽  
Vol 35 (3) ◽  
pp. 1022-1028
Author(s):  
Yuvita Eka Pertiwi ◽  
Maria Ulfa

The iron based mesoporous silica (Fe2O3/SBA-15) was studied for the first time for adsorption of phenol as a model adsorbate compound. The structural and textural properties of the synthesized samples were characterized by means of X-Ray Diffraction, Transmission Electron Microscopy, FTIR and element analysis techniques by Energy Dispersive X-Ray (EDX). The result of XRD analysis showed that mesoporous SBA-15 silica molecular sieves which modified with Fe2O3has a hexagonal structure with a pore size is 4.90 nm and iron contents (25.27%) were found on the surface of the Fe2O3/mesoporous silica SBA-15. While the FTIR analysis showed that Fe2O3/SBA-15 had functional group of assymetric Si-O-Si and Fe-O-Si which was found at 1085 cm-1 and 678 cm-1, respectively. Adsorption performance of Fe2O3/SBA-15 material investigated by phenol compounds as adsorbate model. The optimum contact time is 60 minutes and the Kinetics model of the mesoporous SBA-15 silica molecular sieves modified Fe2O3 can adsorb phenol compounds following the Kinetics Model Ho and McKay. The result optimum adsorption capacity occuring in the adsorption of phenol compounds by of the mesoporous SBA-15 silica molecular sieves modified Fe2O3 is 114.000 mg/g.


2016 ◽  
Vol 9 (12) ◽  
pp. 5763-5779 ◽  
Author(s):  
Long Cui ◽  
Zhou Zhang ◽  
Yu Huang ◽  
Shun Cheng Lee ◽  
Donald Ray Blake ◽  
...  

Abstract. Volatile organic compound (VOC) control is an important issue of air quality management in Hong Kong because ozone formation is generally VOC limited. Several oxygenated volatile organic compound (OVOC) and VOC measurement techniques – namely, (1) offline 2,4-dinitrophenylhydrazine (DNPH) cartridge sampling followed by high-performance liquid chromatography (HPLC) analysis; (2) online gas chromatography (GC) with flame ionization detection (FID); and (3) offline canister sampling followed by GC with mass spectrometer detection (MSD), FID, and electron capture detection (ECD) – were applied during this study. For the first time, the proton transfer reaction–mass spectrometry (PTR-MS) technique was also introduced to measured OVOCs and VOCs in an urban roadside area of Hong Kong. The integrated effect of ambient relative humidity (RH) and temperature (T) on formaldehyde measurements by PTR-MS was explored in this study. A Poly 2-D regression was found to be the best nonlinear surface simulation (r  =  0.97) of the experimental reaction rate coefficient ratio, ambient RH, and T for formaldehyde measurement. This correction method was found to be better than correcting formaldehyde concentrations directly via the absolute humidity of inlet sample, based on a 2-year field sampling campaign at Mong Kok (MK) in Hong Kong. For OVOC species, formaldehyde, acetaldehyde, acetone, and MEK showed good agreements between PTR-MS and DNPH-HPLC with slopes of 1.00, 1.10, 0.76, and 0.88, respectively, and correlation coefficients of 0.79, 0.75, 0.60, and 0.93, respectively. Overall, fair agreements were found between PTR-MS and online GC-FID for benzene (slope  =  1.23, r  =  0.95), toluene (slope  =  1.01, r  =  0.96) and C2-benzenes (slope  =  1.02, r  =  0.96) after correcting benzene and C2-benzenes levels which could be affected by fragments formed from ethylbenzene. For the intercomparisons between PTR-MS and offline canister measurements by GC-MSD/FID/ECD, benzene showed good agreement, with a slope of 1.05 (r  =  0.62), though PTR-MS had lower values for toluene and C2-benzenes with slopes of 0.78 (r  =  0.96) and 0.67 (r  =  0.92), respectively. All in all, the PTR-MS instrument is suitable for OVOC and VOC measurements in urban roadside areas.


Author(s):  
Nagappan Ramaswamy ◽  
Swami Kumaraguru ◽  
Ratandeep Singh Kukreja ◽  
Daniel Groom ◽  
Karalee Jarvis ◽  
...  

Abstract Maintaining the high performance of proton-exchange membrane fuel cells (PEMFC) over the course of its lifetime is a key enabling factor for its successful commercialization as a primary power source in zero-emission transportation applications. In this context, it is important to mitigate the degradation of PtCo-alloy based cathode catalysts used for oxygen reduction reaction (ORR). PtCo-alloy catalysts exhibit high activity at beginning-of-life (BOL) which tends to decrease during operation due to loss of electrochemical surface area (ECSA) and dissolution-contamination related effects of the Co-alloying component. Here, we demonstrate the use of relative humidity (RH) of the inlet gases as a controllable parameter to mitigate the degradation of PtCo-alloy catalyst degradation. We employ a catalyst-specific voltage cycling accelerated stress test (AST) durability protocol as a function of inlet RH to degrade PtCo catalysts. A series of in situ electrochemical diagnostics and ex situ characterizations have been carried out to investigate the catalyst layer characteristics at end-of-test (EOT). Our results show that at sub-saturated conditions of durability protocol operation, PtCo catalyst sustains higher EOT H2/air performance due to better retention of ECSA and smaller impact of Co2+ dissolution/contamination.


Author(s):  
Jeana Mascio ◽  
Stephen S. Leroy ◽  
Robert P. d’Entremont ◽  
Thomas Connor ◽  
E. Robert Kursinski

AbstractRadio occultation (RO) measurements have little direct sensitivity to clouds, but recent studies have shown that they may have an indirect sensitivity to thin, high clouds that are difficult to detect using conventional passive space-based cloud sensors. We implement two RO-based cloud detection (ROCD) algorithms for atmospheric layers in the middle and upper troposphere. The first algorithm is based on the methodology of a previous study, which explored signatures caused by upper tropospheric clouds in RO profiles according to retrieved relative humidity, temperature lapse rate, and gradients in log-refractivity (ROCD-P), and the second is based on inferred relative humidity alone (ROCD-M). In both, atmospheric layers are independently predicted as cloudy or clear based on observational data, including high performance RO retrievals. In a demonstration, we use data from 10 days spanning seven months in 2020 of FORMOSAT-7/COSMIC-2. We use the forecasts of NOAA GFS to aid in the retrieval of relative humidity. The prediction is validated with a cloud truth dataset created from the imagery of the GOES-16 Advanced Baseline Imager (ABI) satellite and the GFS three-dimensional analysis of cloud state conditions. Given these two algorithms for the presence or absence of clouds, confusion matrices and receiver operating characteristic (ROC) curves are used to analyze how well these algorithms perform. The ROCD-M algorithm has a balanced accuracy, which defines the quality of the classification test that considers both the sensitivity and specificity, greater than 70% for all altitudes between 6 and 10.25 km.


Sign in / Sign up

Export Citation Format

Share Document