scholarly journals Porcine in vitro fermentation characteristics of canola co-products in neutral and acidic fermentation medium pH

Author(s):  
Jung Wook Lee ◽  
Shenggang Wang ◽  
Teresa Seefeldt ◽  
Abigail Donkor ◽  
Brian A. Logue ◽  
...  
2005 ◽  
Vol 2005 ◽  
pp. 225-225
Author(s):  
K. E. Kliem ◽  
R. Morgan ◽  
F. L. Mould

As part of the EU Framework 5 project “Rumen-Up”, plants were screened for their effect on thein vitrofermentation medium pH. Common lettuce(Lactuca sativa)and stinging nettle(Urtica dioica)were identified as having a positive effect, maintaining a higher pH when fermented with wheat over 48 hours. It was considered that the rumen microflora may adapt to the inclusion of either plant in the diet, leading to negation of the effect, and therefore reducing the opportunities for use as a supplement to prevent acidosis. This study was designed to investigate the persistency of the anti-acidosis effect using the Rumen Simulation Technique (RUSITEC), together with batchin vitrofermentation using inoculum harvested from RUSITEC.


Fermentation ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. 14
Author(s):  
Nelson Mota de Carvalho ◽  
Diana Luazi Oliveira ◽  
Mayra Anton Dib Saleh ◽  
Manuela Pintado ◽  
Ana Raquel Madureira

The use of fecal inoculums for in vitro fermentation models requires a viable gut microbiota, capable of fermenting the unabsorbed nutrients. Fresh samples from human donors are used; however, the availability of fresh fecal inoculum and its inherent variability is often a problem. This study aimed to optimize a method of preserving pooled human fecal samples for in vitro fermentation studies. Different conditions and times of storage at −20 °C were tested. In vitro fermentation experiments were carried out for both fresh and frozen inoculums, and the metabolic profile compared. In comparison with the fresh, the inoculum frozen in a PBS and 30% glycerol solution, had a significantly lower (p < 0.05) bacterial count (<1 log CFU/mL). However, no significant differences (p < 0.05) were found between the metabolic profiles after 48 h. Hence, a PBS and 30% glycerol solution can be used to maintain the gut microbiota viability during storage at −20 °C for at least 3 months, without interfering with the normal course of colonic fermentation.


2021 ◽  
Author(s):  
Shiyi Lu ◽  
Deirdre Mikkelsen ◽  
Hong Yao ◽  
Barbara Williams ◽  
Bernadine Flanagan ◽  
...  

Plant cell walls as well as their component polysaccharides in foods can be utilized to alter and maintain a beneficial human gut microbiota, but it is not known whether the...


2021 ◽  
Vol 258 ◽  
pp. 117698
Author(s):  
Shiyi Lu ◽  
Deirdre Mikkelsen ◽  
Bernadine M. Flanagan ◽  
Barbara A. Williams ◽  
Michael J. Gidley

Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1655
Author(s):  
Zvezdelina Yaneva ◽  
Donika Ivanova ◽  
Nikolay Popov

The main goal of the present study was to investigate the microencapsulation, in vitro release capacity and efficiency of catechin-rich Acacia catechu extract by Clinosorbent-5 (CLS-5) microparticles by in-depth detailed analyses and mathematical modelling of the encapsulation and in vitro release kinetics behaviour of the polyphenol-mineral composite system. The bioflavanol encapsulation and release efficiency on/from the mineral matrix were assessed by sorption experiments and interpretative modelling of the experimental data. The surface and spectral characteristics of the natural bioactive substance and the inorganic microcarrier were determined by Fourier Transform Infrared Spectroscopy (FTIR) and Ultraviolet/Visible (UV/Vis) spectrophotometric analyses. The maximum extent of catechin microencapsulation in acidic medium was 32%. The in vitro release kinetics study in simulated enzyme-free gastric medium (pH = 1.2) approved 88% maximum release efficiency achieved after 24 h. The in vitro release profile displayed that the developed bioflavanol/clinoptilolite microcarrier system provided sustained catechin in vitro release behaviour without an initial burst effect. Thus, the results from the present study are essential for the design and development of innovative catechin-CLS-5 microcarrier systems for application in human and veterinary medicine.


animal ◽  
2021 ◽  
Vol 15 (5) ◽  
pp. 100195
Author(s):  
D.D. Henry ◽  
F.M. Ciriaco ◽  
R.C. Araujo ◽  
M.E. Garcia-Ascolani ◽  
P.L.P. Fontes ◽  
...  

Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1386
Author(s):  
Zixin Yang ◽  
Ting Huang ◽  
Ping Li ◽  
Jian Ai ◽  
Jiaxin Liu ◽  
...  

The interactions between cell-wall polysaccharides and polyphenols in the gastrointestinal tract have attracted extensive attention. We hypothesized that dietary fiber modulates the fermentation patterns of cyanidin-3-O-glucoside (C3G) in a fiber-type-dependent manner. In the present study, the effects of four dietary fibers (fructose-oligosaccharides, pectin, β-glucan and arabinoxylan) on the modulation of C3G fermentation patterns were investigated through in vitro fermentation inoculated with human feces. The changes in gas volume, pH, total carbohydrate content, metabolites of C3G, antioxidant activity, and microbial community distribution during in vitro fermentation were analyzed. After 24 h of fermentation, the gas volume and total carbohydrate contents of the four dietary-fiber-supplemented groups respectively increased and decreased to varying degrees. The results showed that the C3G metabolites after in vitro fermentation mainly included cyanidin, protocatechuic acid, 2,4,6-trihydroxybenzoic acid, and 2,4,6-trihydroxybenzaldehyde. Supplementation of dietary fibers changed the proportions of C3G metabolites depending on the structures. Dietary fibers increased the production of short-chain fatty acids and the relative abundance of gut microbiota Bifidobacterium and Lactobacillus, thus potentially maintaining colonic health to a certain extent. In conclusion, the used dietary fibers modulate the fermentation patterns of C3G in a fiber-type-dependent manner.


Animals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2212
Author(s):  
Mónica Gandarillas ◽  
Juan Pablo Keim ◽  
Elisa María Gapp

Background: Horses are hindgut fermenters, and it is therefore important to determine the postgastric nutritive value of their feedstuffs and diets. Moreover, it has been demonstrated in other animal species that the fermentation of diets results in different values than those expected from pure ingredients. Therefore, the general objective of this work is to evaluate the gas production (GP) and volatile fatty acid (VFA) concentration, as well as the associative effects, of mixtures of different forages and concentrated foods, which are representative of the traditional diets of high-performance horses. Methods: An in vitro gas production experiment was conducted to assess the fermentation of two forages and three concentrates that are typical in horse diets. The combination of 70% of forage and 30% concentrates was also assessed to determine potential associative effects. Results: Concentrates and grains produced higher GP and VFA than forages when evaluated alone. When experimental diets were incubated, GP parameters and VFA concentrations of forage–concentrate mixtures had unexpected differences from the values expected from the fermentation of pure ingredients, suggesting the occurrence of associative effects. Conclusions: Our results indicate that there is a need to evaluate the fermentation of diets, rather than predicting from the values of pure ingredients.


2011 ◽  
Vol 75 (3) ◽  
pp. 365-376 ◽  
Author(s):  
Eva Ogué-Bon ◽  
Christina Khoo ◽  
Lesley Hoyles ◽  
Anne L. McCartney ◽  
Glenn R. Gibson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document