An Epitaxial Coating with Preferred Orientation Stabilizing High-Energy Ni-Rich NCA Cathodes

2021 ◽  
pp. 152183
Author(s):  
Shuai Hu ◽  
Jun Wang ◽  
Yao Lu ◽  
Lishan Yang ◽  
Lijun Xiong ◽  
...  
Geophysics ◽  
2007 ◽  
Vol 72 (2) ◽  
pp. E69-E75 ◽  
Author(s):  
Hans-Rudolf Wenk ◽  
Ivan Lonardelli ◽  
Hermann Franz ◽  
Kurt Nihei ◽  
Seiji Nakagawa

Shales display significant seismic anisotropy that is attributed in part to preferred orientation of constituent minerals. This orientation pattern has been difficult to quantify because of the poor crystallinity and small grain size of clay minerals. A new method is introduced that uses high-energy synchrotron X-rays to obtain diffraction images in transmission geometry and applies it to an illite-rich shale. The images are analyzed with the crystallographic Rietveld method to obtain quantitative information about phase proportions, crystal structure, grain size, and preferred orientation (texture) that is the focus of the study. Textures for illite are extremely strong, with a maximum of 10 multiples of a random distribution for (001) pole figures. From the three-dimensional orientation distribution of crystallites, and single-crystal elastic properties, the intrinsic anisotropic elastic constants of the illite aggregate (excluding contribution from aligned micropores) can be calculated by appropriate medium averaging. The illitic shale displays roughly transverse isotropy with [Formula: see text] close to [Formula: see text] and more than twice as strong as [Formula: see text]. This method will lend itself to investigate complex polymineralic shales and quantify the contribution of preferred orientation to macroscopic anisotropy.


2021 ◽  
Vol 1 ◽  
pp. 69-70
Author(s):  
Rebecca Kühn ◽  
Michael Stipp ◽  
Bernd Leiss

Abstract. The physical properties of claystones, shales, and slates are highly dependent on the alignment of phyllosilicate minerals. With increasing overburdening, the shape and the crystallographic preferred orientation of these minerals are affected by uniaxial shortening as well as tectonic processes including recrystallization under elevated pressure and temperature conditions. The microstructural anisotropy expressed mainly by the alignment of phyllosilicates significantly predetermines the orientation of fractures, hence the shear strength and stability of clay-rich sediments and rocks. A quantitative analysis of phyllosilicate alignment is therefore essential to evaluate the properties and the mechanical behavior of these rocks. This can be carried out by analyzing the crystallographic preferred orientation (texture). Although texture analysis is a common tool in geosciences, it becomes more difficult in fine-grained rocks owing to for example particle size, heterogeneity, the polyphase composition, and difficulties in sample preparation. Methods such as electron backscatter diffraction, neutron diffraction, or laboratory X-ray diffraction are restricted with respect to preparation artifacts, sampling size and statistics, water content, etc. To overcome these issues, we successfully apply high-energy X-ray diffraction as available at synchrotron research facilities, e.g., at the German Electron Synchrotron Facility (DESY) in Hamburg, Germany, or the European Synchrotron Research Facility (ESRF) in Grenoble, France. In combination with Rietveld refinement we analyze the bulk texture of phyllosilicate-rich rocks. Here we present the results of texture analysis from a wide range of these rocks: Pleistocene poorly consolidated mud (rocks), affected only by sedimentation and burial; more highly consolidated but tectonically largely unaffected Jurassic claystone from the Opalinus Formation of the Swabian Alb; Carboniferous shales from the Harz mountains representing low-grade metamorphic and deformed rocks. Our methodical approach to quantifying the microstructural anisotropy using texture analysis in fine-grained rocks allows for the quantification of physical properties resulting from the alignment of phyllosilicates. Furthermore, it enables the prediction of direction-dependent mechanical strength, which is crucial for the establishment of long-term repositories for radioactive waste in shales and claystones.


2016 ◽  
Vol 4 (16) ◽  
pp. 5942-5951 ◽  
Author(s):  
Yu Li ◽  
Ying Bai ◽  
Chuan Wu ◽  
Ji Qian ◽  
Guanghai Chen ◽  
...  

3D fusiform hierarchical micro/nano Li1.2Ni0.2Mn0.6O2 with preferred orientation (110) plane is successfully synthesized via a simple hydrothermal method, where the voltage fading is efficiently suppressed, and the rate performance is improved.


Nanomaterials ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2495
Author(s):  
Fangkun Li ◽  
Zhengbo Liu ◽  
Jiadong Shen ◽  
Xijun Xu ◽  
Liyan Zeng ◽  
...  

The cathode, a crucial constituent part of Li-ion batteries, determines the output voltage and integral energy density of batteries to a great extent. Among them, Ni-rich LiNixCoyMnzO2 (x + y + z = 1, x ≥ 0.6) layered transition metal oxides possess a higher capacity and lower cost as compared to LiCoO2, which have stimulated widespread interests. However, the wide application of Ni-rich cathodes is seriously hampered by their poor diffusion dynamics and severe voltage drops. To moderate these problems, a nanobrick Ni-rich layered LiNi0.6Co0.2Mn0.2O2 cathode with a preferred orientation (110) facet was designed and successfully synthesized via a modified co-precipitation route. The galvanostatic intermittent titration technique (GITT) and electrochemical impedance spectroscopy (EIS) analysis of LiNi0.6Co0.2Mn0.2O2 reveal its superior kinetic performance endowing outstanding rate performance and long-term cycle stability, especially the voltage drop being as small as 67.7 mV at a current density of 0.5 C for 200 cycles. Due to its unique architecture, dramatically shortened ion/electron diffusion distance, and more unimpeded Li-ion transmission pathways, the current nanostructured LiNi0.6Co0.2Mn0.2O2 cathode enhances the Li-ion diffusion dynamics and suppresses the voltage drop, thus resulting in superior electrochemical performance.


2010 ◽  
Vol 44 (1) ◽  
pp. 150-157 ◽  
Author(s):  
R. J. Cernik ◽  
C. C. T. Hansson ◽  
C. M. Martin ◽  
M. Preuss ◽  
M. Attallah ◽  
...  

A titanium alloy sample (#6246) containing a linear friction weld has been imaged nondestructively using tomographic energy-dispersive diffraction imaging (TEDDI). The diffraction patterns measured at each point of the TEDDI image permitted identification of the material and phases present (±5%). The image also showed the preferred orientation and size–strain distribution present within the sample without the need for any further sample preparation. The preferred orientation was observed in clusters with average dimensions very similar to the experimental spatial resolution (400 µm). The length scales and preferred orientation distributions were consistent with orientation imaging microscopy measurements made by Szczepanski, Jha, Larsen & Jones [Metall. Mater. Trans. A(2008),39, 2841–2851] where the microstructure development was linked to the grain growth of the parent material. The use of a high-energy X-ray distribution (30–80 keV) in the incident beam reduced systematic errors due to the source profile, sample and air absorption. The TEDDI data from each voxel were reduced to an angle-dispersive form and Rietveld refined to a mean χ2of 1.4. The mean lattice parameter error (δd/d) ranged from ∼10−4for the highly crystalline regions to ∼10−3for regions of very strong preferred orientation and internal strain. The March–Dollase preferred orientation errors refined to an average value of ±2%. A 100% correlation between observed fluorescence and diffraction peak broadening was observed, providing further evidence for vicinal strain broadening.


1984 ◽  
Vol 75 ◽  
pp. 599-602
Author(s):  
T.V. Johnson ◽  
G.E. Morfill ◽  
E. Grun

A number of lines of evidence suggest that the particles making up the E-ring are small, on the order of a few microns or less in size (Terrile and Tokunaga, 1980, BAAS; Pang et al., 1982 Saturn meeting; Tucson, AZ). This suggests that a variety of electromagnetic and plasma affects may be important in considering the history of such particles. We have shown (Morfill et al., 1982, J. Geophys. Res., in press) that plasma drags forces from the corotating plasma will rapidly evolve E-ring particle orbits to increasing distance from Saturn until a point is reached where radiation drag forces acting to decrease orbital radius balance this outward acceleration. This occurs at approximately Rhea's orbit, although the exact value is subject to many uncertainties. The time scale for plasma drag to move particles from Enceladus' orbit to the outer E-ring is ~104yr. A variety of effects also act to remove particles, primarily sputtering by both high energy charged particles (Cheng et al., 1982, J. Geophys. Res., in press) and corotating plasma (Morfill et al., 1982). The time scale for sputtering away one micron particles is also short, 102 - 10 yrs. Thus the detailed particle density profile in the E-ring is set by a competition between orbit evolution and particle removal. The high density region near Enceladus' orbit may result from the sputtering yeild of corotating ions being less than unity at this radius (e.g. Eviatar et al., 1982, Saturn meeting). In any case, an active source of E-ring material is required if the feature is not very ephemeral - Enceladus itself, with its geologically recent surface, appears still to be the best candidate for the ultimate source of E-ring material.


Author(s):  
J. B. Warren

Electron diffraction intensity profiles have been used extensively in studies of polycrystalline and amorphous thin films. In previous work, diffraction intensity profiles were quantitized either by mechanically scanning the photographic emulsion with a densitometer or by using deflection coils to scan the diffraction pattern over a stationary detector. Such methods tend to be slow, and the intensities must still be converted from analog to digital form for quantitative analysis. The Instrumentation Division at Brookhaven has designed and constructed a electron diffractometer, based on a silicon photodiode array, that overcomes these disadvantages. The instrument is compact (Fig. 1), can be used with any unmodified electron microscope, and acquires the data in a form immediately accessible by microcomputer.Major components include a RETICON 1024 element photodiode array for the de tector, an Analog Devices MAS-1202 analog digital converter and a Digital Equipment LSI 11/2 microcomputer. The photodiode array cannot detect high energy electrons without damage so an f/1.4 lens is used to focus the phosphor screen image of the diffraction pattern on to the photodiode array.


Author(s):  
J. M. Oblak ◽  
W. H. Rand

The energy of an a/2 <110> shear antiphase. boundary in the Ll2 expected to be at a minimum on {100} cube planes because here strue ture is there is no violation of nearest-neighbor order. The latter however does involve the disruption of second nearest neighbors. It has been suggested that cross slip of paired a/2 <110> dislocations from octahedral onto cube planes is an important dislocation trapping mechanism in Ni3Al; furthermore, slip traces consistent with cube slip are observed above 920°K.Due to the high energy of the {111} antiphase boundary (> 200 mJ/m2), paired a/2 <110> dislocations are tightly constricted on the octahedral plane and cannot be individually resolved.


Author(s):  
E.D. Wolf

Most microelectronics devices and circuits operate faster, consume less power, execute more functions and cost less per circuit function when the feature-sizes internal to the devices and circuits are made smaller. This is part of the stimulus for the Very High-Speed Integrated Circuits (VHSIC) program. There is also a need for smaller, more sensitive sensors in a wide range of disciplines that includes electrochemistry, neurophysiology and ultra-high pressure solid state research. There is often fundamental new science (and sometimes new technology) to be revealed (and used) when a basic parameter such as size is extended to new dimensions, as is evident at the two extremes of smallness and largeness, high energy particle physics and cosmology, respectively. However, there is also a very important intermediate domain of size that spans from the diameter of a small cluster of atoms up to near one micrometer which may also have just as profound effects on society as “big” physics.


Author(s):  
Lucien F. Trueb

A new type of synthetic industrial diamond formed by an explosive shock process has been recently developed by the Du Pont Company. This material consists of a mixture of two basically different forms, as shown in Figure 1: relatively flat and compact aggregates of acicular crystallites, and single crystals in the form of irregular polyhedra with straight edges.Figure 2 is a high magnification micrograph typical for the fibrous aggregates; it shows that they are composed of bundles of crystallites 0.05-0.3 μ long and 0.02 μ. wide. The selected area diffraction diagram (insert in Figure 2) consists of a weak polycrystalline ring pattern and a strong texture pattern with arc reflections. The latter results from crystals having preferred orientation, which shows that in a given particle most fibrils have a similar orientation.


Sign in / Sign up

Export Citation Format

Share Document