Th cell transcription factors: Sequence characteristics and expression profiles in Epinephelus coioides after Cryptocaryon irritans infection

Aquaculture ◽  
2021 ◽  
pp. 737349
Author(s):  
Qing Han ◽  
Hongping Chen ◽  
Yingtong Hu ◽  
Rui Han ◽  
Zequan Mo ◽  
...  
2013 ◽  
Vol 19 (6) ◽  
pp. 915-922 ◽  
Author(s):  
Xuesong HU ◽  
Xiaochun LIU ◽  
Yong ZHANG ◽  
Shuisheng LI ◽  
Huapu CHEN ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Nurshafika Mohd Sakeh ◽  
Siti Nor Akmar Abdullah ◽  
Mohammad Nazri Abdul Bahari ◽  
Azzreena Mohamad Azzeme ◽  
Noor Azmi Shaharuddin ◽  
...  

Abstract Background Hemibiotrophic pathogen such as the fungal pathogen Ganoderma boninense that is destructive to oil palm, manipulates host defense mechanism by strategically switching from biotrophic to necrotrophic phase. Our previous study revealed two distinguishable expression profiles of oil palm genes that formed the basis in deducing biotrophic phase at early interaction which switched to necrotrophic phase at a later stage of infection. Results The present report is a continuing study from our previous published transcriptomic profiling of oil palm seedlings against G. boninense. We focused on identifying differentially expressed genes (DEGs) encoding transcription factors (TFs) from the same RNA-seq data; resulting in 106 upregulated and 108 downregulated TFs being identified. The DEGs are involved in four established defense-related pathways responsible for cell wall modification, reactive oxygen species (ROS)-mediated signaling, programmed cell death (PCD) and plant innate immunity. We discovered upregulation of JUNGBRUNNEN 1 (EgJUB1) during the fungal biotrophic phase while Ethylene Responsive Factor 113 (EgERF113) demonstrated prominent upregulation when the palm switches to defense against necrotrophic phase. EgJUB1 was shown to have a binding activity to a 19 bp palindromic SNBE1 element, WNNYBTNNNNNNNAMGNHW found in the promoter region of co-expressing EgHSFC-2b. Further in silico analysis of promoter regions revealed co-expression of EgJUB1 with TFs containing SNBE1 element with single nucleotide change at either the 5th or 18th position. Meanwhile, EgERF113 binds to both GCC and DRE/CRT elements promoting plasticity in upregulating the downstream defense-related genes. Both TFs were proven to be nuclear-localized based on subcellular localization experiment using onion epidermal cells. Conclusion Our findings demonstrated unprecedented transcriptional reprogramming of specific TFs potentially to enable regulation of a specific set of genes during different infection phases of this hemibiotrophic fungal pathogen. The results propose the intricacy of oil palm defense response in orchestrating EgJUB1 during biotrophic and EgERF113 during the subsequent transition to the necrotrophic phase. Binding of EgJUB1 to SNBE motif instead of NACBS while EgERF113 to GCC-box and DRE/CRT motifs is unconventional and not normally associated with pathogen infection. Identification of these phase-specific oil palm TFs is important in designing strategies to tackle or attenuate the progress of infection.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Guangzhong Xu ◽  
Kai Li ◽  
Nengwei Zhang ◽  
Bin Zhu ◽  
Guosheng Feng

Background. Construction of the transcriptional regulatory network can provide additional clues on the regulatory mechanisms and therapeutic applications in gastric cancer.Methods. Gene expression profiles of gastric cancer were downloaded from GEO database for integrated analysis. All of DEGs were analyzed by GO enrichment and KEGG pathway enrichment. Transcription factors were further identified and then a global transcriptional regulatory network was constructed.Results. By integrated analysis of the six eligible datasets (340 cases and 43 controls), a bunch of 2327 DEGs were identified, including 2100 upregulated and 227 downregulated DEGs. Functional enrichment analysis of DEGs showed that digestion was a significantly enriched GO term for biological process. Moreover, there were two important enriched KEGG pathways: cell cycle and homologous recombination. Furthermore, a total of 70 differentially expressed TFs were identified and the transcriptional regulatory network was constructed, which consisted of 566 TF-target interactions. The top ten TFs regulating most downstream target genes were BRCA1, ARID3A, EHF, SOX10, ZNF263, FOXL1, FEV, GATA3, FOXC1, and FOXD1. Most of them were involved in the carcinogenesis of gastric cancer.Conclusion. The transcriptional regulatory network can help researchers to further clarify the underlying regulatory mechanisms of gastric cancer tumorigenesis.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Guanlan Xing ◽  
Jinyu Li ◽  
Wenli Li ◽  
Sin Man Lam ◽  
Hongli Yuan ◽  
...  

Abstract Background Both APETALA2/Ethylene Responsive Factor (AP2/ERF) superfamily and R2R3-MYB family were from one of the largest diverse families of transcription factors (TFs) in plants, and played important roles in plant development and responses to various stresses. However, no systematic analysis of these TFs had been conducted in the green algae A. protothecoides heretofore. Temperature was a critical factor affecting growth and lipid metabolism of A. protothecoides. It also remained largely unknown whether these TFs would respond to temperature stress and be involved in controlling lipid metabolism process. Results Hereby, a total of six AP2 TFs, six ERF TFs and six R2R3-MYB TFs were identified and their expression profiles were also analyzed under low-temperature (LT) and high-temperature (HT) stresses. Meanwhile, differential adjustments of lipid pathways were triggered, with enhanced triacylglycerol accumulation. A co-expression network was built between these 18 TFs and 32 lipid-metabolism-related genes, suggesting intrinsic associations between TFs and the regulatory mechanism of lipid metabolism. Conclusions This study represented an important first step towards identifying functions and roles of AP2 superfamily and R2R3-MYB family in lipid adjustments and response to temperature stress. These findings would facilitate the biotechnological development in microalgae-based biofuel production and the better understanding of photosynthetic organisms’ adaptive mechanism to temperature stress.


2020 ◽  
Author(s):  
Feng Tian ◽  
Fan Zhou ◽  
Xiang Li ◽  
Wenping Ma ◽  
Honggui Wu ◽  
...  

SummaryBy circumventing cellular heterogeneity, single cell omics have now been widely utilized for cell typing in human tissues, culminating with the undertaking of human cell atlas aimed at characterizing all human cell types. However, more important are the probing of gene regulatory networks, underlying chromatin architecture and critical transcription factors for each cell type. Here we report the Genomic Architecture of Cells in Tissues (GeACT), a comprehensive genomic data base that collectively address the above needs with the goal of understanding the functional genome in action. GeACT was made possible by our novel single-cell RNA-seq (MALBAC-DT) and ATAC-seq (METATAC) methods of high detectability and precision. We exemplified GeACT by first studying representative organs in human mid-gestation fetus. In particular, correlated gene modules (CGMs) are observed and found to be cell-type-dependent. We linked gene expression profiles to the underlying chromatin states, and found the key transcription factors for representative CGMs.HighlightsGenomic Architecture of Cells in Tissues (GeACT) data for human mid-gestation fetusDetermining correlated gene modules (CGMs) in different cell types by MALBAC-DTMeasuring chromatin open regions in single cells with high detectability by METATACIntegrating transcriptomics and chromatin accessibility to reveal key TFs for a CGM


2020 ◽  
Author(s):  
Li Wen ◽  
Wei Li ◽  
Stephen Parris ◽  
Matthew West ◽  
John Lawson ◽  
...  

Abstract • Background • Genotype independent transformation and whole plant regeneration through somatic embryogenesis relies heavily on the intrinsic ability of a genotype to regenerate. • Results • In this study, gene expression profiles of a highly regenerable Gossypium hirsutum L. cultivar, Jin668, were analyzed at two critical developmental stages during somatic embryogenesis, non-embryogenic callus (NEC) cells and embryogenic callus (EC) cells. The rate of EC formation in Jin668 is 96%. Differential gene expression analysis revealed a total of 5,333 differentially expressed genes (DEG) with 2,534 upregulated and 2,799 downregulated in EC. A total of 144 genes were unique to NEC cells and 174 genes unique to EC. Clustering and enrichment analysis identified genes upregulated in EC that function as transcription factors/DNA binding, phytohormone response, oxidative reduction, and regulators of transcription; while genes categorized in methylation pathways were downregulated. Four key transcription factors were identified based on their sharp upregulation in EC tissue; LEAFY COTYLEDON 1 (LEC1), BABY BOOM (BBM), FUSCA (FUS3) and AGAMOUS-LIKE15 with distinguishable subgenome expression bias. • Conclusions • This comparative analysis of NEC and EC transcriptomes gives new insights into the genetic underpinnings of somatic embryogenesis in cotton.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9551
Author(s):  
Lidong Hao ◽  
Shubing Shi ◽  
Haibin Guo ◽  
Ming Li ◽  
Pan Hu ◽  
...  

The Ethylene-Response Factor (ERF) subfamily transcription factors (TFs) belong to the APETALA2/Ethylene-Responsive Factor (AP2/ERF) superfamily and play a vital role in plant growth and development. However, identification and analysis of the ERF subfamily genes in maize have not yet been performed at genome-wide level. In this study, a total of 76 ERF subfamily TFs were identified and were found to be unevenly distributed on the maize chromosomes. These maize ERF (ZmERF) TFs were classified into six groups, namely groups B1 to B6, based on phylogenetic analysis. Synteny analysis showed that 50, 54, and 58 of the ZmERF genes were orthologous to those in rice, Brachypodium, and Sorghum, respectively. Cis-element analysis showed that elements related to plant growth and development, hormones, and abiotic stress were identified in the promoter region of ZmERF genes. Expression profiles suggested that ZmERF genes might participate in plant development and in response to salinity and drought stresses. Our findings lay a foundation and provide clues for understanding the biological functions of ERF TFs in maize.


2021 ◽  
Author(s):  
Qi Ai ◽  
Wenqiu Pan ◽  
Yan Zeng ◽  
Yihan Li ◽  
Licao Cui

Abstract Background: CCCH transcription factors are important zinc finger transcription factors involved in the response to biotic and abiotic stress and physiological and developmental processes. Barley (Hordeum vulgare) is an agriculturally important cereal crop with multiple uses, such as brewing production, animal feed, and human food. The identification and assessment of new functional genes are important for the molecular breeding of barley. Results: In this study, a total of 35 protein-encoding CCCH genes unevenly dispersed on seven different chromosomes were identified in barley. Phylogenetic analysis categorized the barley CCCH genes (HvC3Hs) into seven subfamilies according to their distinct features, and this classification was supported by intron–exon structure and conserved motif analysis. Despite the large genome size of barley, the lower number of CCCH genes in barley might be attributed to the low frequency of segmental and tandem duplication events. Furthermore, the HvC3H genes displayed distinct expression profiles for different developmental processes and in response to various types of stresses. The expression of HvC3H9 was significantly induced by multiple types of abiotic stress and/or phytohormone treatment, which might make it an excellent target for the molecular breeding of barley. Genetic variation of HvC3Hs was characterized using publicly available exome-capture sequencing datasets. Clear genetic divergence was observed between wild and landrace barley populations in HvC3H genes. For most HvC3Hs, nucleotide diversity and the number of haplotype polymorphisms decreased during barley domestication. Conclusion: Overall, our study provides a comprehensive characterization of barley CCCH transcription factors, their diversity, and their biological functions.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Li Wen ◽  
Wei Li ◽  
Stephen Parris ◽  
Matthew West ◽  
John Lawson ◽  
...  

Abstract Background Genotype independent transformation and whole plant regeneration through somatic embryogenesis relies heavily on the intrinsic ability of a genotype to regenerate. The critical genetic architecture of non-embryogenic callus (NEC) cells and embryogenic callus (EC) cells in a highly regenerable cotton genotype is unknown. Results In this study, gene expression profiles of a highly regenerable Gossypium hirsutum L. cultivar, Jin668, were analyzed at two critical developmental stages during somatic embryogenesis, non-embryogenic callus (NEC) cells and embryogenic callus (EC) cells. The rate of EC formation in Jin668 is 96%. Differential gene expression analysis revealed a total of 5333 differentially expressed genes (DEG) with 2534 genes upregulated and 2799 genes downregulated in EC. A total of 144 genes were unique to NEC cells and 174 genes were unique to EC. Clustering and enrichment analysis identified genes upregulated in EC that function as transcription factors/DNA binding, phytohormone response, oxidative reduction, and regulators of transcription; while genes categorized in methylation pathways were downregulated. Four key transcription factors were identified based on their sharp upregulation in EC tissue; LEAFY COTYLEDON 1 (LEC1), BABY BOOM (BBM), FUSCA (FUS3) and AGAMOUS-LIKE15 with distinguishable subgenome expression bias. Conclusions This comparative analysis of NEC and EC transcriptomes gives new insights into the genes involved in somatic embryogenesis in cotton.


Sign in / Sign up

Export Citation Format

Share Document