LncRNA CTBP1-AS2 alleviates high glucose-induced oxidative stress, ECM accumulation, and inflammation in diabetic nephropathy via miR-155-5p/FOXO1 axis

2020 ◽  
Vol 532 (2) ◽  
pp. 308-314 ◽  
Author(s):  
Guang Wang ◽  
Bing Wu ◽  
Bo Zhang ◽  
Kun Wang ◽  
Heyuan Wang
2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Jie Yun ◽  
Jinyu Ren ◽  
Yufei Liu ◽  
Lijuan Dai ◽  
Liqun Song ◽  
...  

Abstract Background Circular RNAs (circRNAs) have been considered as pivotal biomarkers in Diabetic nephropathy (DN). CircRNA ARP2 actin-related protein 2 homolog (circ-ACTR2) could promote the HG-induced cell injury in DN. However, how circ-ACTR2 acts in DN is still unclear. This study aimed to explore the molecular mechanism of circ-ACTR2 in DN progression, intending to provide support for the diagnostic and therapeutic potentials of circ-ACTR2 in DN. Methods RNA expression analysis was conducted by the quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Cell growth was measured via Cell Counting Kit-8 and EdU assays. Inflammatory response was assessed by Enzyme-linked immunosorbent assay. The protein detection was performed via western blot. Oxidative stress was evaluated by the commercial kits. The molecular interaction was affirmed through dual-luciferase reporter and RNA immunoprecipitation assays. Results Circ-ACTR2 level was upregulated in DN samples and high glucose (HG)-treated human renal mesangial cells (HRMCs). Silencing the circ-ACTR2 expression partly abolished the HG-induced cell proliferation, inflammation and extracellular matrix accumulation and oxidative stress in HRMCs. Circ-ACTR2 was confirmed as a sponge for miR-205-5p. Circ-ACTR2 regulated the effects of HG on HRMCs by targeting miR-205-5p. MiR-205-5p directly targeted high-mobility group AT-hook 2 (HMGA2), and HMGA2 downregulation also protected against cell injury in HG-treated HRMCs. HG-mediated cell dysfunction was repressed by miR-205-5p/HMGA2 axis. Moreover, circ-ACTR2 increased the expression of HMGA2 through the sponge effect on miR-205-5p in HG-treated HRMCs. Conclusion All data have manifested that circ-ACTR2 contributed to the HG-induced DN progression in HRMCs by the mediation of miR-205-5p/HMGA2 axis.


2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Jee Young Han ◽  
Jin Joo Cha ◽  
Young Sun Kang ◽  
Jung Yeon Ghee ◽  
Ji Ae Yoo ◽  
...  

Abstract Background and Aims Activating Transcription Factor 3 (ATF3) is a stress-adaptive transcription factor, which has been suggested to be involved in maintaining glucose homeostasis. ATF3 respond rapidly to various stimuli like high glucose, fatty acids and oxidative stress, and is observed to either protective or detrimental effects in diabetic condition. Therefore to elucidate the exact role in diabetic nephropathy of ATF3, we investigated the role of ATF3 by inhibition with Raf-inhibitor GW5047 on diabetic mice model. Method ATF3 level was examined in the mouse podocytes and NRK cells with either overexpression or downregulation with ATF3. 8 week db/m and db/db mice as the model of diabetic mice were examined for the expression of ATF3 and were treated with GW5074, a Raf1 kinase inhibitor targeting the ATF3 intraperitoneally with a dose of 0.5mg/kg for 12 weeks. Results In cultured mouse podocytes and NRK cells, high glucose and angiotensin II markedly increased ATF3 expression. Gene Expressions of NOX4, MCP-1 and NF-kB were augmented by ATF3, and were attenuated by ATF3 siRNA. In db/db mice, plasma ATF3 level was not different from control db/m, however the urinary ATF3 excretion was significantly higher. Treatment of GW5074 decreased urinary ATF3 excretion. After 12 week treatment, serum creatinine level was significantly lower in the treatment db/db group, with less systemic oxidative stress. There were no significant differences in body weight, whereas the food intake was decreased in GW5047 group. Overall lipid profile or HOMA-IR, HbA1c level was not different from each group. Serum adiponectin were otherwise increased in GW5074 group. Urinary excretion of albumin at 2 month of treatment decreased with urinary nephrin excretion. Trend of increased gene expression of JNK, p-38, smad2, ERK which was downregulated by GW5074 was noted. Conclusion These findings suggest that in diabetic condition, the activation of ATF3 is associated pathogenesis of diabetic nephropathy and targeting ATF3 may have a protective role in the disease progression.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Minghua Zhang ◽  
Liang Feng ◽  
Junfei Gu ◽  
Liang Ma ◽  
Dong Qin ◽  
...  

Oxidative stress (OS) has been regarded as one of the major pathogeneses of diabetic nephropathy (DN) through damaging kidney which is associated with renal cells dysfunction. The aim of this study was to investigate whether Moutan Cortex (MC) could protect kidney function against oxidative stressin vitroorin vivo. The compounds in MC extract were analyzed by HPLC-ESI-MS. High-glucose-fat diet and STZ (30 mg kg−1) were used to induce DN rats model, while 200 μg mL−1AGEs were for HBZY-1 mesangial cell damage. The treatment with MC could significantly increase the activity of SOD, glutathione peroxidase (GSH-PX), and catalase (CAT). However, lipid peroxidation malondialdehyde (MDA) was reduced markedlyin vitroorin vivo. Furthermore, MC decreased markedly the levels of blood glucose, serum creatinine, and urine protein in DN rats. Immunohistochemical assay showed that MC downregulated significantly transforming growth factor beta 2 (TGF-β2) protein expression in renal tissue. Our data provided evidence to support this fact that MC attenuated OS in AGEs-induced mesangial cell dysfunction and also in high-glucose-fat diet and STZ-induced DN rats.


2017 ◽  
Vol 45 (07) ◽  
pp. 1441-1457 ◽  
Author(s):  
Lin An ◽  
Mei Zhou ◽  
Faiz M. M. T. Marikar ◽  
Xue-Wen Hu ◽  
Qiu-Yun Miao ◽  
...  

Diabetic nephropathy (DN) is a common cause of chronic kidney disease and end-stage renal disease, which can be triggered by oxidative stress. In this study, we investigated the renoprotective effect of the ethyl acetate extract of Salvia miltiorrhiza (EASM) on DN and examined the underlying molecular mechanism. We observed that EASM treatment attenuated metabolic abnormalities associated with hyperglycemic conditions in the experimental DN model. In streptozotocin (STZ)-induced mice, EASM treatment reduced albuminuria, improved renal function and alleviated the pathological alterations within the glomerulus. To mimic the hyperglycemic conditions in DN patients, we used high glucose (25[Formula: see text]mmol/L) media to stimulate mouse mesangial cells (MMCs), and EASM inhibited high glucose-induced reactive oxygen species. We also observed that EASM enhanced the expression of nuclear factor erythroid-2-related factor 2 (Nrf2), which mediated the anti-oxidant response, and its downstream gene heme oxygenase-1 (HO-1) and NAD(P)H quinone dehydrogenase 1 (NQO1) with concomitant decrease of expression of kelch-like ECH-associated protein 1 (keap1) both in vitro and in vivo. Taken together, these results suggest that EASM alleviates the progression of DN and this might be associated with activation of Nrf2.


2018 ◽  
Vol 29 (4) ◽  
pp. 1108-1127 ◽  
Author(s):  
Yaeni Kim ◽  
Ji Hee Lim ◽  
Min Young Kim ◽  
Eun Nim Kim ◽  
Hye Eun Yoon ◽  
...  

Adiponectin exerts renoprotective effects against diabetic nephropathy (DN) by activating the AMP-activated protein kinase (AMPK)/peroxisome proliferative-activated receptor–α (PPARα) pathway through adiponectin receptors (AdipoRs). AdipoRon is an orally active synthetic adiponectin receptor agonist. We investigated the expression of AdipoRs and the associated intracellular pathways in 27 patients with type 2 diabetes and examined the effects of AdipoRon on DN development in male C57BLKS/J db/db mice, glomerular endothelial cells (GECs), and podocytes. The extent of glomerulosclerosis and tubulointerstitial fibrosis correlated with renal function deterioration in human kidneys. Expression of AdipoR1, AdipoR2, and Ca2+/calmodulin-dependent protein kinase kinase–β (CaMKKβ) and numbers of phosphorylated liver kinase B1 (LKB1)– and AMPK-positive cells significantly decreased in the glomeruli of early stage human DN. AdipoRon treatment restored diabetes-induced renal alterations in db/db mice. AdipoRon exerted renoprotective effects by directly activating intrarenal AdipoR1 and AdipoR2, which increased CaMKKβ, phosphorylated Ser431LKB1, phosphorylated Thr172AMPK, and PPARα expression independently of the systemic effects of adiponectin. AdipoRon-induced improvement in diabetes-induced oxidative stress and inhibition of apoptosis in the kidneys ameliorated relevant intracellular pathways associated with lipid accumulation and endothelial dysfunction. In high-glucose–treated human GECs and murine podocytes, AdipoRon increased intracellular Ca2+ levels that activated a CaMKKβ/phosphorylated Ser431LKB1/phosphorylated Thr172AMPK/PPARα pathway and downstream signaling, thus decreasing high-glucose–induced oxidative stress and apoptosis and improving endothelial dysfunction. AdipoRon further produced cardioprotective effects through the same pathway demonstrated in the kidney. Our results show that AdipoRon ameliorates GEC and podocyte injury by activating the intracellular Ca2+/LKB1-AMPK/PPARα pathway, suggesting its efficacy for treating type 2 diabetes–associated DN.


2016 ◽  
Vol 4 (4) ◽  
Author(s):  
Takashi Hatanaka ◽  
Daisuke Ogawa ◽  
Hiromi Tachibana ◽  
Jun Eguchi ◽  
Tatsuyuki Inoue ◽  
...  

2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Daisuke Ogawa ◽  
Masato Asanuma ◽  
Ikuko Miyazaki ◽  
Hiromi Tachibana ◽  
Jun Wada ◽  
...  

Metallothionein (MT) is an intracellular metal-binding, cysteine-rich protein, and is a potent antioxidant that protects cells and tissues from oxidative stress. Although the major isoforms MT-1 and -2 (MT-1/-2) are highly inducible in many tissues, the distribution and role of MT-1/-2 in diabetic nephropathy are poorly understood. In this study, diabetes was induced in adult male rats by streptozotocin, and renal tissues were stained with antibodies for MT-1/-2. MT-1/-2 expression was also evaluated in mProx24 cells, a mouse renal proximal tubular epithelial cell line, stimulated with high glucose medium and pretreated with the antioxidant vitamin E. MT-1/-2 expression was gradually and dramatically increased, mainly in the proximal tubular epithelial cells and to a lesser extent in the podocytes in diabetic rats, but was hardly observed in control rats. MT-1/-2 expression was also increased by high glucose stimulation in mProx24 cells. Because the induction of MT was suppressed by pretreatment with vitamin E, the expression of MT-1/-2 is induced, at least in part, by high glucose-induced oxidative stress. These observations suggest that MT-1/-2 is induced in renal proximal tubular epithelial cells as an antioxidant to protect the kidney from oxidative stress, and may offer a novel therapeutic target against diabetic nephropathy.


2021 ◽  
Author(s):  
Zhao Chen ◽  
Lifang Tian ◽  
Li Wang ◽  
Xiaotao Ma ◽  
Fuqian Lei ◽  
...  

Abstract Hyperglycemia-induced oxidative stress of podocytes exerts a major role in the pathological process of diabetic nephropathy. Tripartite motif-containing protein 32 (TRIM32) has been reported as a key protein in the modulation of cellular apoptosis and oxidative stress under various pathological processes. However, whether TRIM32 participates in the regulation of high glucose (HG)-induced injury in podocytes has not been investigated. The aims of this work were to assess the possible role of TRIM32 in mediating HG-induced apoptosis, oxidative stress and inflammatory response in podocytes in vitro. Herein, our results showed a marked increase in TRIM32 expression in HG-exposed podocytes. Loss-of-function experiments showed that the knockdown of TRIM32 improved the viability of HG-stimulated podocytes, and suppressed HG-induced apoptosis, oxidative stress and inflammatory response in podocytes. Further investigation revealed that the inhibition of TRIM32 enhanced the activation of nuclear factor erythroid 2-related factor 2 (Nrf2) signaling associated with modulation of the Akt/glycogen synthase kinase-3β (GSK-3β) axis in podocytes following HG exposure. However, the suppression of Akt abrogated the TRIM32-knockdown-mediated activation of Nrf2 in HG-exposed podocytes. In addition, the knockdown of Nrf2 markedly abolished the TRIM32-inhibition-induced protective effects in HG-exposed podocytes. In summary, the results of this work show that the inhibition of TRIM32 protects podocytes from HG-induced injury by potentiating Nrf2 signaling via the modulation of Akt/GSK-3β signaling. This study indicates a potential role of TRIM32 in mediating podocyte injury during the progression of diabetic nephropathy.


Sign in / Sign up

Export Citation Format

Share Document