Angiogenesis-Based Diabetic Skin Reconstruction through Multifunctional Hydrogel with Sustained Releasing of M2 Macrophage-derived Exosome

2021 ◽  
pp. 132413
Author(s):  
Pei Liu ◽  
Yuan Xiong ◽  
Lang Chen ◽  
Chuanchuan Lin ◽  
Yayan Yang ◽  
...  
2013 ◽  
Vol 51 (08) ◽  
Author(s):  
SY Weng ◽  
K Padberg ◽  
YO Kim ◽  
XY Wang ◽  
M Mccaleb ◽  
...  
Keyword(s):  

2018 ◽  
Vol 33 (2) ◽  
pp. 70-76 ◽  
Author(s):  
A. E. Gombozhapova ◽  
Yu. V. Rogovskaya ◽  
M. S. Rebenkova ◽  
J. G. Kzhyshkowska ◽  
V. V. Ryabov

Purpose. Myocardial regeneration is one of the most ambitious goals in prevention of adverse cardiac remodeling. Macrophages play a key role in transition from inflammatory to regenerative phase during wound healing following myocardial infarction (MI). We have accumulated data on macrophage properties ex vivo and in cell culture. However, there is no clear information about phenotypic heterogeneity of cardiac macrophages in patients with MI. The purpose of the project was to assess cardiac macrophage infiltration during wound healing following myocardial infarction in clinical settings taking into consideration experimental knowledge.Material and Methods. The study included 41 patients with fatal MI type 1. In addition to routine analysis, macrophages infiltration was assessed by immunohistochemistry. We used CD68 as a marker for the cells of the macrophage lineage, while CD163, CD206, and stabilin-1 were considered as M2 macrophage biomarkers. Nine patients who died from noncardiovascular causes comprised the control group.Results. The intensity of cardiac macrophage infiltration was higher during the regenerative phase than during the inflammatory phase. Results of immunohistochemical analysis demonstrated the presence of phenotypic heterogeneity of cardiac macrophages in patients with MI. We noticed that numbers of CD68+, CD163+, CD206+, and stabilin-1+ macrophages depended on MI phase.Conclusion. Our study supports prospects for implementation of macrophage phenotyping in clinic practice. Improved understanding of phenotypic heterogeneity might become the basis of a method to predict adverse cardiac remodeling and the first step in developing myocardial regeneration target therapy.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Jie Yao ◽  
Zefen Wang ◽  
Yong Cheng ◽  
Chao Ma ◽  
Yahua Zhong ◽  
...  

Abstract Background Glioma, the most common primary brain tumor, account Preparing figures for 30 to 40% of all intracranial tumors. Herein, we aimed to study the effects of M2 macrophage-derived exosomal microRNAs (miRNAs) on glioma cells. Methods First, we identified seven differentially expressed miRNAs in infiltrating macrophages and detected the expression of these seven miRNAs in M2 macrophages. We then selected hsa-miR-15a-5p (miR-15a) and hsa-miR-92a-3p (miR-92a) for follow-up studies, and confirmed that miR-15a and miR-92a were under-expressed in M2 macrophage exosomes. Subsequently, we demonstrated that M2 macrophage-derived exosomes promoted migration and invasion of glioma cells, while exosomal miR-15a and miR-92a had the opposite effects on glioma cells. Next, we performed the target gene prediction in four databases and conducted target gene validation by qRT-PCR, western blot and dual luciferase reporter gene assays. Results The results revealed that miR-15a and miR-92a were bound to CCND1 and RAP1B, respectively. Western blot assays demonstrated that interference with the expression of CCND1 or RAP1B reduced the phosphorylation level of AKT and mTOR, indicating that both CCND1 and RAP1B can activate the PI3K/AKT/mTOR signaling pathway. Conclusion Collectively, these findings indicate that M2 macrophage-derived exosomal miR-15a and miR-92a inhibit cell migration and invasion of glioma cells through PI3K/AKT/mTOR signaling pathway.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 868
Author(s):  
Fabiana Albani Zambuzi ◽  
Priscilla Mariane Cardoso-Silva ◽  
Ricardo Cardoso Castro ◽  
Caroline Fontanari ◽  
Flavio da Silva Emery ◽  
...  

Decitabine is an approved hypomethylating agent used for treating hematological malignancies. Although decitabine targets altered cells, epidrugs can trigger immunomodulatory effects, reinforcing the hypothesis of immunoregulation in treated patients. We therefore aimed to evaluate the impact of decitabine treatment on the phenotype and functions of monocytes and macrophages, which are pivotal cells of the innate immunity system. In vitro decitabine administration increased bacterial phagocytosis and IL-8 release, but impaired microbicidal activity of monocytes. In addition, during monocyte-to-macrophage differentiation, treatment promoted the M2-like profile, with increased expression of CD206 and ALOX15. Macrophages also demonstrated reduced infection control when exposed to Mycobacterium tuberculosis in vitro. However, cytokine production remained unchanged, indicating an atypical M2 macrophage. Furthermore, when macrophages were cocultured with lymphocytes, decitabine induced a reduction in the release of inflammatory cytokines such as IL-1β, TNF-α, and IFN-γ, maintaining IL-10 production, suggesting that decitabine could potentialize M2 polarization and might be considered as a therapeutic against the exacerbated immune response.


2021 ◽  
Vol 22 (14) ◽  
pp. 7666
Author(s):  
Sara C. Credendino ◽  
Marta De Menna ◽  
Irene Cantone ◽  
Carmen Moccia ◽  
Matteo Esposito ◽  
...  

Forkhead box E1 (FOXE1) is a lineage-restricted transcription factor involved in thyroid cancer susceptibility. Cancer-associated polymorphisms map in regulatory regions, thus affecting the extent of gene expression. We have recently shown that genetic reduction of FOXE1 dosage modifies multiple thyroid cancer phenotypes. To identify relevant effectors playing roles in thyroid cancer development, here we analyse FOXE1-induced transcriptional alterations in thyroid cells that do not express endogenous FOXE1. Expression of FOXE1 elicits cell migration, while transcriptome analysis reveals that several immune cells-related categories are highly enriched in differentially expressed genes, including several upregulated chemokines involved in macrophage recruitment. Accordingly, FOXE1-expressing cells induce chemotaxis of co-cultured monocytes. We then asked if FOXE1 was able to regulate macrophage infiltration in thyroid cancers in vivo by using a mouse model of cancer, either wild type or with only one functional FOXE1 allele. Expression of the same set of chemokines directly correlates with FOXE1 dosage, and pro-tumourigenic M2 macrophage infiltration is decreased in tumours with reduced FOXE1. These data establish a novel link between FOXE1 and macrophages recruitment in the thyroid cancer microenvironment, highlighting an unsuspected function of this gene in the crosstalk between neoplastic and immune cells that shape tumour development and progression.


Author(s):  
Roberta F.J. Criado ◽  
Paulo Ricardo Criado ◽  
Carla Pagliari ◽  
Mirian N. Sotto ◽  
Carlos D'Apparecida Machado Filho ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document