A review on durability of fiber reinforced polymer (FRP) bars reinforced seawater sea sand concrete

2020 ◽  
Vol 256 ◽  
pp. 119484 ◽  
Author(s):  
Azzam Ahmed ◽  
Shuaicheng Guo ◽  
Zuhua Zhang ◽  
Caijun Shi ◽  
Deju Zhu
Materials ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1898
Author(s):  
Marek Urbański

A new type of HFRP hybrid bars (hybrid fiber reinforced polymer) was introduced to increase the rigidity of FRP reinforcement, which was a basic drawback of the FRP bars used so far. Compared to the BFRP (basalt fiber reinforced polymer) bars, modification has been introduced in HFRP bars consisting of swapping basalt fibers with carbon fibers. One of the most important mechanical properties of FRP bars is compressive strength, which determines the scope of reinforcement in compressed reinforced concrete elements (e.g., column). The compression properties of FRP bars are currently ignored in the standards (ACI, CSA). The article presents compression properties for HFRP bars based on the developed compression test method. Thirty HFRP bars were tested for comparison with previously tested BFRP bars. All bars had a nominal diameter of 8 mm and their nonanchored (free) length varied from 50 to 220 mm. Test results showed that the ultimate compressive strength of nonbuckled HFRP bars as a result of axial compression is about 46% of the ultimate strength. In addition, the modulus of elasticity under compression does not change significantly compared to the modulus of elasticity under tension. A linear correlation of buckling load strength was proposed depending on the free length of HFRP bars.


2008 ◽  
Vol 35 (3) ◽  
pp. 312-320 ◽  
Author(s):  
A. Zaidi ◽  
R. Masmoudi

The difference between the transverse coefficients of thermal expansion of fiber reinforced polymer (FRP) bars and concrete generates radial pressure at the FRP bar – concrete interface, which induces tensile stresses within the concrete under temperature increase and, eventually, failure of the concrete cover if the confining action of concrete is insufficient. This paper presents the results of an experimental study to investigate the thermal effect on the behaviour of FRP bars and concrete cover, using concrete slab specimens reinforced with glass FRP bars and subjected to thermal loading from –30 to +80 °C. The experimental results show that failure of concrete cover was produced at temperatures varying between +50 and +60 °C for slabs having a ratio of concrete cover thickness to FRP bar diameter (c/db) less than or equal to 1.4. A ratio of c/db greater than or equal to 1.6 seems to be sufficient to avoid splitting failure of concrete cover for concrete slabs subjected to high temperatures up to +80 °C. Also, the first cracks appear in concrete at the FRP bar – concrete interface at temperatures around +40 °C. Comparison between experimental and analytical results in terms of thermal loads and thermal strains is presented.


2022 ◽  
pp. 136943322110651
Author(s):  
Ruiming Cao ◽  
Bai Zhang ◽  
Luming Wang ◽  
Jianming Ding ◽  
Xianhua Chen

Alkali-activated materials (AAMs) are considered an eco-friendly alternative to ordinary Portland cement (OPC) for mitigating greenhouse-gas emissions and enabling efficient waste recycling. In this paper, an innovative seawater sea-sand concrete (SWSSC), that is, seawater sea-sand alkali-activated concrete (SWSSAAC), was developed using AAMs instead of OPC to explore the application of marine resources and to improve the durability of conventional SWSSC structures. Then, three types of fiber-reinforced polymer (FRP) bars, that is, basalt-FRP, glass-FRP, and carbon-FRP bars, were selected to investigate their bond behavior with SWSSAAC at different alkaline dosages (3%, 4%, and 6% Na2O contents). The experimental results manifested that the utilization of the alkali-activated binders can increase the splitting tensile strength ( ft) of the concrete due to the denser microstructures of AAMs than OPC pastes. This improved characteristic was helpful in enhancing the bond performance of FRP bars, especially the slope of bond-slip curves in the ascending section (i.e., bond stiffness). Approximately three times enhancement in terms of the initial bond rigidity was achieved with SWSSAAC compared to SWSSC at the same concrete strength. Furthermore, compared with the BFRP and GFRP bars, the specimens reinforced with the CFRP bars experienced higher bond strength and bond rigidity due to their relatively high tensile strength and elastic modulus. Additionally, significant improvements in initial bond stiffness and bond strength were also observed as the alkaline contents (i.e., concrete strength) of the SWSSAAC were aggrandized, demonstrating the integration of the FRP bars and SWSSAAC is achievable, which contributes to an innovative channel for the development of SWSSC pavements or structures.


2020 ◽  
Vol 12 (3) ◽  
pp. 168781402091288
Author(s):  
Suraksha Sharma ◽  
Daxu Zhang ◽  
Qi Zhao

Although numerous experimental and analytical investigations on the environmental effects on basalt fiber–reinforced polymer bars were carried out, degradation of the basalt fiber–reinforced polymer bar in seawater and sea sand concrete environment has been insufficiently analyzed. This work presents two distinct numerical approaches, degradation rate–based approach and diffusion-based approach, to investigate the durability of basalt fiber–reinforced polymer bars in seawater and sea sand concrete solution subjected to various temperatures (32°C, 40°C, 48°C, and 55°C). The degradation of the material was quantified using a simplified two-dimensional model of a homogenized basalt fiber–reinforced polymer bar in COMSOL Multiphysics software. Fickian diffusion provides basis for modeling diffusion-based approach. The findings from both the approaches suggested that the basalt fiber–reinforced polymer bar becomes more susceptible to degradation as the exposure temperature increases and results in greater geometrical deformities. The comparisons of experimental data, analytical solutions, and numerical results showcase that the present numerical models can predict the degradation of a basalt fiber–reinforced polymer bar in a seawater and sea sand concrete environment.


2007 ◽  
Vol 345-346 ◽  
pp. 1217-1220
Author(s):  
Jung Yoon Lee

The use of fiber reinforced polymer (FRP) bars has been gaining increasing popularity in the civil engineering community due to their favorable properties such as high-strength-to-weight ratio and good corrosion resistance. In order for concrete to be FRP reinforced, there must be interfacial bond between FRP bars and concrete. The interfacial bond behavior of FRP bars to concrete is expected to vary from that of conventional steel bars, since various key parameters that influence bond performance are different. This paper presents the results of an experimental and analytical study on the interfacial surface interaction of glass fiber reinforced polymer (GFRP) bars in high strength concrete cube. The experimental program consisted of testing 54 concrete cubes prepared according to CSA S802-02 standard 1). The split specimens showed that interfacial bond failure of the steel bar occurred due to concrete crushing in front of the bar deformations, while interfacial bond failure of the GFRP bars occurred partly on the surface of the bar and partly in the concrete by peeling of the surface layer of the bar.


2002 ◽  
Vol 29 (1) ◽  
pp. 125-134 ◽  
Author(s):  
John Newhook ◽  
Amin Ghali ◽  
Gamil Tadros

Fiber reinforced polymer (FRP) bars have lower modulus of elasticity than steel bars. For this reason when FRP bars are used as flexural nonprestressed reinforcement in concrete sections, the stress in the FRP is limited to a relatively small fraction of its tensile strength. This limit, necessary to control width of cracks at service, governs design of the required cross-sectional area of the FRP. Parametric studies on rectangular and T-sections are presented to show that the design based on allowable strain in the FRP results in sections that exhibit large deformation before failure. The concept of deformability, given in the Canadian Highway Bridge Design Code, as a requirement in the design of sections is discussed and modifications suggested. Using the new definition, it is shown that when, in addition to the crack control requirement, an upper limit is imposed on the cross-sectional area of the FRP, no calculations will be necessary to check the deformability.Key words: fibre reinforced polymer, reinforcement, concrete, design, deformability.


Polymers ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 154
Author(s):  
Shaoce Dong ◽  
Chenggao Li ◽  
Guijun Xian

Application of glass- or carbon-fiber-reinforced polymer (GFRP/CFRP) bars makes the direct use of seawater and sea sand concrete (SWSSC) in construction feasible, which is of high interest in order to conserve the limited resources of fresh water and river sand. The present paper performed the life cycle assessment (LCA) of constructing three kinds of beams (GFRP/CFRP bar-reinforced SWSSC beams, and steel bar-reinforced common concrete (SRC) beam) in marine environments to show the environmental benefits of using FRP bar-reinforced SWSSC beams in marine environments. According to ISO 14040 and ISO 14044, stages including production, transportation, construction, use and end-of-life are within the LCA’s boundary. The ReCiPe method and eight main environmental impact categories were used to characterize the environmental impacts of those beams. LCA results indicate that one cubic meter SWSSC possesses much lower environmental impacts in terms of all eight categories compared with common concrete with the same volume when used in marine environments, with reduction rates from 26.3% to 48.6%. When the two transportation distances were set as 50 and 20 km and without considering the difference in service life, compared to SRC beam, GFRP-SWSSC beam performs better in six categories and CFRP-SWSSC beam performs better in four categories. When considering increased transportation distance and the higher durability performance, the advantageous categories for GFRP-SWSSC and CFRP-SWSSC beams increase to seven and six, respectively. The environmental impacts of all the three beams are mainly affected by the production stages.


Sign in / Sign up

Export Citation Format

Share Document