Analysis of mechanical properties of rubberised mortar and influence of styrene–butadiene latex on interfacial behaviour of rubber–cement matrix

2021 ◽  
Vol 300 ◽  
pp. 124027
Author(s):  
Zhe Xiong ◽  
Zhenxing Tang ◽  
Shaohua He ◽  
Zhen Fang ◽  
Zhuoming Chen ◽  
...  
Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 519
Author(s):  
Vitalii Bezgin ◽  
Agata Dudek ◽  
Adam Gnatowski

This paper proposes and presents the chemical modification of linear hydroxyethers (LHE) with different molecular weights (380, 640, and 1830 g/mol) with the addition of three types of rubbers (polysulfide rubber (PSR), polychloroprene rubber (PCR), and styrene-butadiene rubber (SBR)). The main purpose of choosing this type of modification and the materials used was the possibility to use it in industrial settings. The modification process was conducted for a very wide range of modifier additions (rubber) per 100 g LHE. The materials obtained in the study were subjected to strength tests in order to determine the effect of the modification on functional properties. Mechanical properties of the modified materials were improved after the application of the modifier (rubber) to polyhydroxyether (up to certain modifier content). The most favorable changes in the tested materials were registered in the modification of LHE-1830 with PSR. In the case of LHE-380 and LHE-640 modified in cyclohexanol (CH) and chloroform (CF) solutions, an increase in the values of the tested properties was also obtained, but to a lesser extent than for LHE-1830. The largest changes were registered for LHE-1830 with PSR in CH solution: from 12.1 to 15.3 MPa for compressive strength tests, from 0.8 to 1.5 MPa for tensile testing, from 0.8 to 14.7 MPa for shear strength, and from 1% to 6.5% for the maximum elongation. The analysis of the available literature showed that the modification proposed by the authors has not yet been presented in any previous scientific paper.


Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2413
Author(s):  
Mariapaola Staropoli ◽  
Vincent Rogé ◽  
Enzo Moretto ◽  
Joffrey Didierjean ◽  
Marc Michel ◽  
...  

The improvement of mechanical properties of polymer-based nanocomposites is usually obtained through a strong polymer–silica interaction. Most often, precipitated silica nanoparticles are used as filler. In this work, we study the synergetic effect occurring between dual silica-based fillers in a styrene-butadiene rubber (SBR)/polybutadiene (PBD) rubber matrix. Precipitated Highly Dispersed Silica (HDS) nanoparticles (10 nm) have been associated with spherical Stöber silica nanoparticles (250 nm) and anisotropic nano-Sepiolite. By imaging filler at nano scale through Scanning Transmission Electron Microscopy, we have shown that anisotropic fillers align only in presence of a critical amount of HDS. The dynamic mechanical analysis of rubber compounds confirms that this alignment leads to a stiffer nanocomposite when compared to Sepiolite alone. On the contrary, spherical 250 nm nanoparticles inhibit percolation network and reduce the nanocomposite stiffness.


2018 ◽  
Vol 170 ◽  
pp. 03030 ◽  
Author(s):  
Rustem Mukhametrakhimov ◽  
Liliya Lukmanova

The paper studies features of the hydration process of the modified blended cement for fiber cement panels (FCP) using differential thermal analysis, X-ray diffraction analysis, electron microscopy and infrared spectroscopy. It is found that deeper hydration process in silicate phase, denser and finer crystalline structure form in fiber cement matrix based on the modified blended cement. Generalization of this result to the case of fiber cement panels makes it possible to achieve formation of a denser and homogeneous structure with increased physical and mechanical properties.


2013 ◽  
Vol 592-593 ◽  
pp. 647-650 ◽  
Author(s):  
Małgorzata Lenart

Cement – polymer composites are nowadays widely used in repair systems not only in case of concrete or reinforced concrete constructions but also in masonry. Polymers addition for example already at 5% m.c. modifies the structure of the cement – polymer composite in a way that many of the mechanical properties such as flexural strength, tensile strength or adhesion to substrates are improved. The paper presents the results of tests such as flexural, compressive or adhesion strength to ceramic substrate of hardened cement mortars with different composition, as well as selected cement mortars modified by two polymers: polyvinyl alcohol and styrene – butadiene polymer dosed at 5 % m.c. Four types of cement mortars modified by lime (component used in historical constructions as well as in contemporary masonry mortars) are also examined for comparison.


2014 ◽  
Vol 624 ◽  
pp. 189-196 ◽  
Author(s):  
Valeria Corinaldesi ◽  
Jacopo Donnini ◽  
Giorgia Mazzoni

The use of composites with cement matrix seems to acquire an increasing interest in applications to masonry structures, due to their low impact, and a deeper understanding of the mechanical interaction between support and reinforcement is certainly necessary. The effectiveness of these interventions strongly depends on the bond between strengthening material and masonry, on the fibers/matrix interface, as well as on the mechanical properties of the masonry substrate [1]. In this work the attention was focused on the possible improvement of the bond between FRCM and masonry by means of an inorganic primer, which can be spread on the ceramic support before the application of FRCM reinforcement. Two different kinds of brick were tested, in order to simulate more or less porous masonry supports. Results obtained showed that, independently on the kind of brick used (more or less porous) the presence of an inorganic primer always improves bond between masonry support and the cementitiuos matrix of FRCM. In fact, the cementitous matrix of FRCM has been studied and optimized in order to guarantee the best fibers/matrix interface, while it is not necessarily the best option for improving the adhesion with the masonry support. In particular, very effective seems to be the use of very fine inorganic particles (at nanometric scale), which proved to be able to assure the best results in terms of bond strength. Also the fresh consistence of the primer seemed to influence the final result.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Eduardo Sadot Herrera-Sosa ◽  
Gonzalo Martínez-Barrera ◽  
Carlos Barrera-Díaz ◽  
Epifanio Cruz-Zaragoza

In polymer reinforced concrete, the Young’s modulus of both polymers and cement matrix is responsible for the detrimental properties of the concrete, including compressive and tensile strength, as well as stiffness. A novel methodology for solving such problems is based on use of ionizing radiation, which has proven to be a good tool for improvement on physical and chemical properties of several materials including polymers, ceramics, and composites. In this work, particles of 0.85 mm and 2.80 mm obtained from waste tire were submitted at 250 kGy of gamma radiation in order to modify their physicochemical properties and then used as reinforcement in Portland cement concrete for improving mechanical properties. The results show diminution on mechanical properties in both kinds of concrete without (or with) irradiated tire particles with respect to plain concrete. Nevertheless such diminutions (from 2 to 16%) are compensated with the use of high concentration of waste tire particles (30%), which ensures that the concrete will not significantly increase the cost.


Sign in / Sign up

Export Citation Format

Share Document