Comparative analysis of fixed and sun tracking low power PV systems considering energy consumption

2015 ◽  
Vol 92 ◽  
pp. 143-148 ◽  
Author(s):  
George Cristian Lazaroiu ◽  
Michela Longo ◽  
Mariacristina Roscia ◽  
Mario Pagano
Author(s):  
Ammar Yasir Hamood Al Rawahi ◽  
Shaik Mazhar Hussain ◽  
Anilloy Frank

In this paper, We design and implement IOT based low power system that can be used in employee meeting rooms. The design is based on number of employees entering and leaving the room and automates room AC, lights and room freshners using relay device. The system designed counts number of employees entering the room using IR device and updates the number using counter and automates electrical appliances of the room and when leaving automatically switches off the devices. The power consumed is updated using ESP 8266 in the cloud called thing speak where the data can be evaluated and analyzed per day and per month. The system has 20*4 LCD which displays the complete details of the employees and electrical appliances. The working of the system starts with the entering of an employee in the room, the buzzer beeps and LED turns on. Arduino Mega is used as a central processor that controls all the appliances. The code is written in C and simulation is done using Proteus ISIS. Finally, the implemented system shows the energy consumption per day and per month and a detailed comparative analysis is done with and without connecting the system which shows a better saving of energy in the employee room. The methodology adapted for our work is V-methodology.


Author(s):  
Carlos Rosa ◽  
Dmitri Vinikov ◽  
Enrique Romero-Cadaval ◽  
Vitor Pires ◽  
Joao Martins
Keyword(s):  

2009 ◽  
Vol 18 (01) ◽  
pp. 181-198 ◽  
Author(s):  
XIAO XIN XIA ◽  
TENG TIOW TAY

Energy consumption is one of the most important design constraints for modern microprocessors, and designers have proposed many energy-saving techniques. Looking beyond the traditional hardware low-power designs, software optimization is becoming a significant strategy for the microprocessor to lower its energy consumption. This paper describes an intra-application identification and reconfiguration mechanism for microprocessor energy reduction. Our mechanism employs a statistical sampling method during training runs to identify code sections among application that have appropriate IPC (Instructions per Cycle) values and could make contributions to program runtime energy reduction, and then profiles them to dynamically scale the voltage and frequency of the microprocessor at appropriate points during execution. In our simulation, our approach achieves energy savings by an average of 39% with minor performance degradation, compared to a processor running at a fixed voltage and speed.


2012 ◽  
Vol 209-211 ◽  
pp. 1068-1072
Author(s):  
Ming Liu ◽  
Bao Gang Zhang ◽  
Liu Wen ◽  
Zhong Zhi Huang

To ensure passengers can have a comfortable thermal environment in the subway waiting room is one of the main targets in subway environment control. By using the CFD software, this paper takes an island platform with double-layer of Shenyang as the object to simulate the thermal environment of platform screen door and ventilation in the open system, then detailed analysis on the variation of the temperature field, airflow velocity field in the typical position. The results indicated that average temperature of no-PSD system platform is 2.5 ~3 °C higher than that of PSD system, standing room is 1.5 °C higher than that of PSD system , but these also meet the requirement of the standards of the environmental control and passengers’ thermal comfort. Meanwhile, through the comparative analysis to the energy consumption of the two systems, we find ventilating condition has superior to PSD system in energy saving, and it is more suitable for the local climate in the northeast.


2012 ◽  
Vol 524-527 ◽  
pp. 3079-3082
Author(s):  
Di Ping Zhang ◽  
Shuang Shuang He ◽  
Gao Qing Li

Taking Zhejiang province as an example, this paper conducted a comparative analysis on the current situation of the energy consumption structure from the vertical and horizontal using the descriptive statistical method. By calculating some indexes such as energy consumption per unit GDP, energy consumption elasticity coefficient, and so on, the study analyzes and evaluates the present situation, trend and influence factors of energy efficiency. Finally, it puts forward some policy suggestions about the optimization of energy consumption structure and energy efficiency.


2021 ◽  
Author(s):  
Dil Rowshan

This study aimed to explore the impact of the Places to Grow Plan 2006 on travel behavior of the work commuters living in GTHA. A comparative analysis was done between the year 2001 and 2011 which represent the situations five year before and after the implementation of the Plan. Data were collected from Transportation Tomorrow Survey. The study revealed that in 2011, energy consumption by motorized vehicles increased in the Traffic Assessment Zones of GTHA around the Growth Centres designated by the Places to Grow Plan. Active transportation increased mainly in Toronto in 2011. It is apprehended that the intensification strategy of the Places to Grow Plan contributed in increasing the energy consumption of work commuters either by increasing the number of trips or length of trips made by motorized vehicles (including cars and different forms of transit) which also affect the Greenhouse Gas emissions in the atmosphere.


2021 ◽  
Author(s):  
Archana Bhat ◽  
Geetha V

Abstract IPv6 Routing Protocol for low power and lossy networks (RPL) is a standardized and default routing protocol for low power lossy networks. However, this is basically designed for sensor networks with scalar data and not optimised for the networks with multi-modal sensors. The data rate of each multi-modal sensor varies based on various applications. RPL suffers from packet drops and re-transmissions which results in packet loss and energy consumption in case of multi-modal data transmission. Hence, the routing strategy implemented in RPL needs better scheduling strategy at parent node for forwarding packets based on various parameters. In this paper, relevant Objective Functions for multi-modal sensor data communication is proposed based on various parameters identified and a weighted ranking based scheduling strategy is proposed for multi-modal data communication called R-RPL. The goal of proposed ranking based RPL (R-RPL) is to increase the throughput and reduce the loss in terms of energy and delay based on proposed scheduling strategy for parent selection. The performance of the proposed R-RPL is evaluated in the contiki based Cooja simulator and compared with RPL protocol. The analysis shows that the R-RPL performs better compared to RPL with respect to packet delivery ratio and energy consumption.


2021 ◽  
Vol 2089 (1) ◽  
pp. 012080
Author(s):  
M. Srinivas ◽  
K.V. Daya Sagar

Abstract Currently, energy consumption in the digital circuit is a key design parameter for emerging mobile products. The principal cause of the power dissipation during idle mode is leakage currents, which are rising dramatically. Sub-threshold leakage is increased by the scaling of threshold voltage when gate current leakage increases because oxide thickness is scaled. With rising demands for mobile devices, leakage energy consumption has received even greater attention. Since a mobile device spends most of its time in standby mode, leakage power savings need to prolong the battery life. That is why low power has become a significant factor in CMOS circuit design. The required design and simulation of an AND gate with the BSIM4 MOS parameter model at 27 0C, supply voltage of 0,70V with CMOS technology of 65nm are the validation of the suitability of the proposed circuit technology. AND simulation. The performance parameters for the two AND input gate are compared with the current MTCMOS and SCCMOS techniques, such as sub-threshold leakage power dissipations in active and standby modes, the dynamic dissipation, and propagation period. The proposed hybrid super cutoff complete stack technique compared to the current MTCMOS technology shows a reduction in sub-threshold dissipation power dissipation by 3. 50x and 1.15x in standby modes and active modes respectively. The hybrid surface-cutting technique also shows savings of 2,50 and 1,04 in power dissipation at the sub-threshold in standby modes and active modes compared with the existing SCCMOS Technique.


Sign in / Sign up

Export Citation Format

Share Document