The preparation of phytosteryl succinyl sucrose esters and improvement of their water solubility and emulsifying properties

2021 ◽  
pp. 131501
Author(s):  
Xue Xia ◽  
Mingxing Ren ◽  
Wen-Sen He ◽  
Chengsheng Jia ◽  
Xiaoming Zhang
Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 178
Author(s):  
Daniel Żmudziński ◽  
Urszula Goik ◽  
Paweł Ptaszek

A protein isolate (85.5%) was obtained from the Vicia faba L. seeds. The main protein fraction, typical for the seeds of this plant, was found to be most numerous: Legumin (35 kDa) and Vicilin (45 kDa). The hydrodynamic and surface properties of isolate aqueous solutions were studied with the help of dynamic light scattering, ζ-potential, and tensometry in a wide range of concentrations and pH conditions. Selected functional properties, like foaming and emulsifying abilities, were studied. An increase of water solubility was shown with a raising pH, as well as a water holding capacity (WHC). The protein isolate showed a tendency to decrease the surface tension of water solutions, with high hydrophobicity and a negative charge of the isolate enhancing the foaming and emulsifying properties. The analysis of the concentration and the pH influence on selected functional properties indicated alkaline conditions as favorable for good foaming and emulsifying properties of the isolate and affected on their rheological properties.


2015 ◽  
Vol 65 (4) ◽  
pp. 453-462 ◽  
Author(s):  
Ibolya Fülöp ◽  
Árpád Gyéresi ◽  
Lóránd Kiss ◽  
Mária A. Deli ◽  
Mircea Dumitru Croitoru ◽  
...  

Abstract Mefenamic acid (MA) is a widely used non-steroidal antiinflammatory (NSAID) drug. The adverse effects typical of NSAIDs are also present in the case of MA, partly due to its low water solubility. The aim of this study was to increase the water solubility of MA in order to influence its absorption and bioavailability. Solid dispersions of MA were prepared by the melting method using polyethylene glycol 6000 and different types (laurate, D-1216; palmitate, P-1670; stearate, S-1670) and amounts of sucrose esters as carriers. The X-ray diffraction results show that MA crystals were not present in the products. Dissolution tests carried out in artificial intestinal juice showed that the product containing 10 % D-1216 increased water solubility about 3 times. The apparent permeability coefficient of MA across human Caco-2 intestinal epithelial cell layers was high and, despite the difference in solubility, there was no further increase in drug penetration in the presence of the applied additives.


2018 ◽  
Vol 2 (2) ◽  
Author(s):  
SULASMI ANGGO

The Analysis of physical chemical from dara shells (Anadara granosa) origin from Kayutanyo, kab. Banggai, has been conducted.Dara shell meat is sleaned and dried and after that powered with blender. Determine % rendement, water bonding capacity and index water solubility with Anderson method, coarse fat content with gravimetric method and carbohydrate method with “bye difference” decrease method.The result of analysis showed rendement value is 24,35%, water bonding capacity is 1,6248 gram/ml, index water solubility is 0,202 gram/ml, water content is 79,0045%, total dust content is 1,072%, coarse protein content is 2,25%, coarse fat content is 8,47%, carbohydrate content is 9,2035%. Keyword : Dara shells, (Anadara granosa), analysis physical chemical


2014 ◽  
Vol 11 (1) ◽  
pp. 29
Author(s):  
Nonnah Ismail ◽  
Juliana Mahmod ◽  
Awatif Khairul Fatihin Mustafa Kamal

In this study, Hydrolysate from angelwing clam (Pholas orientalis) was produced at 0, 1, 2 and 3 hrs and E/S ratio of0.5 and 3%using alcalase where the pH and temperature were kept constant at pH 8.5 and 60°C, respectively. The hydrolysates were analysed for antioxidant and functional properties such as solubility, emulsifying properties and water and oil holding capacity. Degree of hydrolysis (DH), yield, functional and antioxidant properties were influenced by the hydrolysis time and E/S ratio. Higher enzyme concentration (E/S 3%) and longer hydrolysis time increased the DH. Yield was higher at E/S 3% but reduced with hydrolysis time. Longer hydrolysis time produced more soluble hydrolysate and higher metal chelating activity but lower in emulsifying properties and DPPH activity. Higher enzyme concentration resulted in increase only in solubility and metal chelating activity. This study revealed that enzymatic hydrolysis using alcalase should be performed at shorter hydrolysis time using intermediate concentration of enzyme (E/S between 0.5 to 3%) in order to produce angelwing clam hydrolysate with collectively good functional and antioxidant properties. 


2018 ◽  
Author(s):  
Robert Luxenhofer ◽  
Michael M Lübtow ◽  
Lukas Hahn ◽  
Thomas Lorson ◽  
Rainer Schobert

Many natural compounds with interesting biomedical properties share one physicochemical property, namely a low water solubility. Polymer micelles are, among others, a popular means to solubilize hydrophobic compounds. The specific molecular interactions between the polymers and the hydrophobic drugs are diverse and recently it has been discussed that macromolecular engineering can be used to optimize drug loaded micelles. Specifically, π-π stacking between small molecules and polymers has been discussed as an important interaction that can be employed to increase drug loading and formulation stability. Here, we test this hypothesis using four different polymer amphiphiles with varying aromatic content and various natural products that also contain different relative amounts of aromatic moieties. While in the case of paclitaxel, having the lowest relative content of aromatic moieties, the drug loading decreases with increasing relative aromatic amount in the polymer, the drug loading of curcumin, having a much higher relative aromatic content, is increased. Interestingly, the loading using schizandrin A, a dibenzo[a,c]cyclooctadiene lignan with intermediate relative aromatic content is not influenced significantly by the aromatic content of the polymers employed. The very high drug loading, long term stability, the ability to form stable highly loaded binary coformulations in different drug combinations, small sized formulations and amorphous structures in all cases, corroborate earlier reports that poly(2-oxazoline) based micelles exhibit an extraordinarily high drug loading and are promising candidates for further biomedical applications. The presented results underline that the interaction between the polymers and the incorporated small molecules are complex and must be investigated in every specific case.<br>


2019 ◽  
Author(s):  
Jenna Franke ◽  
Benjamin Raliski ◽  
Steven Boggess ◽  
Divya Natesan ◽  
Evan Koretsky ◽  
...  

Fluorophores based on the BODIPY scaffold are prized for their tunable excitation and emission profiles, mild syntheses, and biological compatibility. Improving the water-solubility of BODIPY dyes remains an outstanding challenge. The development of water-soluble BODIPY dyes usually involves direct modification of the BODIPY fluorophore core with ionizable groups or substitution at the boron center. While these strategies are effective for the generation of water-soluble fluorophores, they are challenging to implement when developing BODIPY-based indicators: direct modification of BODIPY core can disrupt the electronics of the dye, complicating the design of functional indicators; and substitution at the boron center often renders the resultant BODIPY incompatible with the chemical transformations required to generate fluorescent sensors. In this study, we show that BODIPYs bearing a sulfonated aromatic group at the meso position provide a general solution for water-soluble BODIPYs. We outline the route to a suite of 5 new sulfonated BODIPYs with 2,6-disubstitution patterns spanning a range of electron-donating and -withdrawing propensities. To highlight the utility of these new, sulfonated BODIPYs, we further functionalize them to access 13 new, BODIPY-based voltage-sensitive fluorophores. The most sensitive of these BODIPY VF dyes displays a 48% ΔF/F per 100 mV in mammalian cells. Two additional BODIPY VFs show good voltage sensitivity (≥24% ΔF/F) and excellent brightness in cells. These compounds can report on action potential dynamics in both mammalian neurons and human stem cell-derived cardiomyocytes. Accessing a range of substituents in the context of a water soluble BODIPY fluorophore provides opportunities to tune the electronic properties of water-soluble BODIPY dyes for functional indicators.


Author(s):  
Jamal Basha D ◽  
Kumar P R ◽  
Ranganayakulu D

An oleo gum resin guggulu is a product which obtained as a result of gummosis from the bark of Commiphora wightii (Arnott) Bhandari [syn. Commiphoramukul (Hook. Ex Stocks) Family, Burseraceae]. It has been known for its immense applicability in the Ayurveda since time immemorial for the treatment of variety of disorders such as inflammation, gout, rheumatism, impotence, leprosy, obesity, and disorders of lipids metabolism. It is a mixture of phytoconstituents like terpenoids, steroids, flavonoids, guggultetrols, lignans, sugars, and amino acids. This review is an effort to compile all the information available on all of its chemical constituents which are responsible for its therapeutic potential, limitation of guggul extracts and the necessity of novel principles for gum guggul. Nowadays, Guggul is available as the marketed formulation for curing numerous clinical conditions and is accessible in combination with various other ingredients. Though conventional dosage form shows the dominance as patient compliance and easy availability, yet it has found to pose the problems like dose fluctuation, peak-valley effect, non-adjustment of the administered drug, invasiveness etc. Guggul lacks its desired effect due to its low bioavailability and water solubility. This makes it a partial or a deficient therapy for remedy of many signs and symptoms. Novel drug delivery system (NDDS), a new approach and has excluded many of drawbacks exhibited by conventional dosage forms. Some of the novel dosage forms of guggul has been formed like nanoparticles, nanovesicles, gugglusomes and proniosomal gel. But still, the novel formulations for guggul has its less outspread in the market. Guggul can be executed as a profitable drug using NDDS. There is a need to highlight the unidentified and unexplained facts about guggul so as to make it more efficacious and effective in terms of bioavailability and aqueous insolubility.


2015 ◽  
Vol 4 (2) ◽  
pp. 41-44
Author(s):  
Priscillia Picauly ◽  
Gilian Tetelepta

Instant porridge is sereal-based food that can be combined with fruits so it will contain better nutrition. To improve the nutrition value of instant porridge then substitute of one kind of banana originally from Maluku is Tongka langit banana. A good quality of instant porridge has a high nutrition and a best physical property. This research aims to characterize of the physical properties instant porridge that are substituted by Tongka langit banana flour and the rice flour. The design that is applied is completely randomized design with four levels of treatment in comparing the substitution between Tongka langit banana flour and the rice flour as follow 20%, 40%, 60% and 80%. According to the result of this research, the physical characteristic of instant porridge that are substituted by Tongka langit banana flour are bulk density (0.84-0.89 g/mL), water absorption index (3.49-4.05%), and water solubility index (0.02-0.04%).


2013 ◽  
Vol 30 (1) ◽  
pp. 73
Author(s):  
Wei JING ◽  
Jun-sheng LI ◽  
Guo-xia HUANG ◽  
Liu-juan YAN ◽  
Chun-hua LAI

Sign in / Sign up

Export Citation Format

Share Document