scholarly journals Impact of particle size of pulverized citrus peel tissue on changes in antioxidant properties of digested fluids during simulated in vitro digestion

2020 ◽  
Vol 9 (1) ◽  
pp. 58-63 ◽  
Author(s):  
Yidi Cai ◽  
Wei Qin ◽  
Sunantha Ketnawa ◽  
Yukiharu Ogawa
2022 ◽  
Vol 8 ◽  
Author(s):  
Ao Li ◽  
Aixia Zhu ◽  
Di Kong ◽  
Chunwei Wang ◽  
Shiping Liu ◽  
...  

For improving solubility and bioaccessibility of phytosterols (PS), phytosterol nanoparticles (PNPs) were prepared by emulsification–evaporation combined high-pressure homogenization method. The organic phase was formed with the dissolved PS and soybean lecithin (SL) in anhydrous ethanol, then mixed with soy protein isolate (SPI) solution, and homogenized into nanoparticles, followed by the evaporation of ethanol. The optimum fabrication conditions were determined as PS (1%, w/v): SL of 1:4, SPI content of 0.75% (w/v), and ethanol volume of 16 ml. PNPs were characterized to have average particle size 93.35 nm, polydispersity index (PDI) 0.179, zeta potential −29.3 mV, and encapsulation efficiency (EE) 97.3%. The impact of temperature, pH, and ionic strength on the stability of fabricated PNPs was determined. After 3-h in vitro digestion, the bioaccessibility of PS in nanoparticles reached 70.8%, significantly higher than the 18.2% of raw PS. Upon freeze-drying, the particle size of PNPs increased to 199.1 nm, resulting in a bimodal distribution. The solubility of PS in water could reach up to 2.122 mg/ml, ~155 times higher than that of raw PS. Therefore, this study contributes to the development of functional PS-food ingredients.


2016 ◽  
Vol 96 (5) ◽  
pp. 657-676 ◽  
Author(s):  
Davide Tagliazucchi ◽  
Ahmed Helal ◽  
Elena Verzelloni ◽  
Angela Conte

2020 ◽  
Vol 10 (11) ◽  
pp. 3668 ◽  
Author(s):  
Justyna Bochnak-Niedźwiecka ◽  
Michał Świeca

This study evaluates nutrients and health-promoting compounds responsible for antioxidant capacity in eight novel formulations based on lyophilized fruit and vegetable powders. The composition contained lyophilized carrot, pumpkin, lentil sprouts, raspberry, strawberry, and apple. The effect of functional additives on the antioxidant, nutritional, and functional characteristics of powdered beverages was determined in the powders and after rehydration followed by in vitro digestion. The antioxidant activity, phenols, vitamin C, and reducing power were significantly higher in the powders enriched with additives having potential functional properties. Furthermore, the analyses indicated that all the powdered formulations may be potential sources of total starch (100–112 mg/100 mL) and proteins (125–139 mg/100 mL). The designed powdered beverages after reconstitution exhibited high antioxidant content, reasonable consumer acceptance, and good in vitro bioaccessibility. The best results of antioxidant capacity were obtained for beverages enriched with raspberry, i.e., 10.4 mg Trolox equivalent (TE)/100 mL and 12.1 mg TE/100 mL rehydrated at 20 °C and 80 °C, respectively. Additionally, color characteristics were used as indicators of the quality of the powdered beverages. This research promotes the reduction of food waste, since whole plant tissues are used, thus allowing maximum exploitation of food raw materials; moreover, drying provides stable shelf life.


2019 ◽  
Vol 10 (8) ◽  
pp. 5174-5187 ◽  
Author(s):  
Clay Swackhamer ◽  
Zhichao Zhang ◽  
Ameer Y. Taha ◽  
Gail M. Bornhorst

In vitro gastric digestion of almond particles using a model with simulated peristaltic contractions resulted in particle size reduction and higher fatty acid bioaccessibility than in vitro digestion using a model that lacked peristaltic contractions.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Tiantian Lin ◽  
Cristina Fernandez-Fraguas

Abstract Objectives Epidemiological evidence suggests that common beans are hypolipidemic agents and therefore able to alleviate obesity and cardiovascular disease. The observed positive effect of bean consumption on blood lipid levels is mainly attributed to their high content of dietary fiber (DF) and it is linked to the ability of DF to interfere with lipid digestion in different ways. Some proposed mechanisms are related to the physicochemical properties of DF and involve binding of bile acids (BA) which could decrease the rate of lipid digestion and absorption in the duodenum. This study aimed to investigate the effect of bean matrices varying in structure, content and distribution of DF fractions on lipid digestion kinetics in vitro. Methods Structurally different bean matrices obtained by several processing techniques (i.e., hydrothermal, high pressure and mechanical treatments) as well isolated DF fractions were investigated. b-glucan was used as comparison. The viscosity, particle size and water and oil-binding ability of bean matrices were determined. We used dialysis, under duodenal conditions and HPLC analysis to determine BA-binding capacity. A standardized multistage static in vitro digestion protocol was used to assess the effect of bean matrices on the lipolysis rate of extrinsic lipids. Results Beans matrices reduced the extent and rate of digestion of corn oil compared to blank, with the water-soluble DF showing the largest reduction. Hydrothermal-treated beans and bean matrices with larger particle size showed the lowest capacity to retain BA and consequently were less effective at reducing the extent of lipolysis. The lower lipolysis rate observed in specific samples was related to their higher BA-binding. Conclusions Different processing variables generated bean microstructures with different potential to modulate lipid digestion. Overall, processing decreased the ability of bean matrices to delay lipolysis. Isolated bean DF has the potential to control lipolysis depending on DF distribution and BA-binding ability. However, none of the bean matrices reached the levels observed with b-glucan. Funding Sources US Dry Bean Council and Hatch Program (NIFA), USDA.


Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 878
Author(s):  
Luz Espinosa-Sandoval ◽  
Claudia Ochoa-Martínez ◽  
Alfredo Ayala-Aponte ◽  
Lorenzo Pastrana ◽  
Catarina Gonçalves ◽  
...  

The food industry has increased its interest in using “consumer-friendly” and natural ingredients to produce food products. In the case of emulsifiers, one of the possibilities is to use biopolymers with emulsification capacity, such as octenyl succinic anhydride modified starch, which can be used in combination with other polysaccharides, such as chitosan and carboxymethylcellulose, in order to improve the capacity to protect bioactive compounds. In this work, multilayer nano-emulsion systems loaded with oregano essential oil were produced by high energy methods and characterized. The process optimization was carried out based on the evaluation of particle size, polydispersity index, and zeta potential. Optimal conditions were achieved for one-layer nano-emulsions resulting in particle size and zeta potential of 180 nm and −42 mV, two layers (after chitosan addition) at 226 nm and 35 mV, and three layers (after carboxymethylcellulose addition) of 265 nm and −1 mV, respectively. The encapsulation efficiency of oregano essential oil within nano-emulsions was 97.1%. Stability was evaluated up to 21 days at 4 and 20 °C. The three layers nano-emulsion demonstrated to be an efficient delivery system of oregano essential oil, making 40% of the initial oregano essential oil available versus 13% obtained for oregano essential oil in oil, after exposure to simulated digestive conditions.


2019 ◽  
Vol 5 (1) ◽  
pp. 1694775
Author(s):  
Renata Adriana Labanca ◽  
Cecilia Svelander ◽  
Marie Alminger ◽  
Fatih Yildiz

Sign in / Sign up

Export Citation Format

Share Document