scholarly journals NLRP3 promotes immune escape by regulating immune checkpoints: A pan-cancer analysis

2022 ◽  
Vol 104 ◽  
pp. 108512
Author(s):  
Yue Ding ◽  
Yilin Yan ◽  
Yihui Dong ◽  
Jingyuan Xu ◽  
Wei Su ◽  
...  
2021 ◽  
Author(s):  
Yue Ding ◽  
Yilin Yan ◽  
Yihui Dong ◽  
Jingyuan Xu ◽  
Wei Su ◽  
...  

Abstract NLRP3 plays a pathogenic role in tumorigenesis by regulating innate and acquired immunity, apoptosis, differentiation, and intestinal microbes in tumors. In different tumors, NLRP3 plays different roles, and its mechanism is complex. Our research aimed to comprehensively investigated the role of NLRP3 in pan-cancers based on multi-omics data in the TCGA database. We found the expression of NLRP3 was changed in tumors compared with paired non-tumor specimens. Most types of tumors showed increased expression of NLRP3. Among them, the overexpressed NLRP3 in liver hepatocellular carcinoma (LIHC) and ovarian cancer (OV) indicated worse overall survival (OS). Further analysis also confirmed overexpressed NLRP3 in colon cancer (COAD) indicated a high probability of microsatellite instability (MSI) and low tumor mutational burden (TMB), which indicated a better response to immune checkpoint inhibitors (ICIs). We also analyzed the association between NLRP3, immune infiltration, and immune checkpoints. Interestingly, overexpression of NLRP3 was closely related to high infiltration of immune cells (T cells, B cells, etc.) and overexpressed immune checkpoints (PD-1, PD-L1, LAG3, etc.). These results demonstrated NLRP3 promoted immune escape in cancers. Finally, we investigated the expression of various immune checkpoints by treating NLRP3 inhibitor MCC950 during the co-culture of peripheral blood mononuclear cells (PBMC) and LIHC cell line Hep3B. We found MCC950 significantly repressed the expression of PD-L1 and LAG3, and promoted the apoptosis rate of Hep3B. In conclusion, our research comprehensive demonstrated the role of NLRP3 in pan-cancer, especially in LIHC. We confirmed inhibition of NLRP3 promoting the immune killing effect to cancer cells by repressing the expression of immune checkpoints.


2020 ◽  
Author(s):  
Jie Mei ◽  
Yun Cai ◽  
Rui Xu ◽  
Xuejing Yang ◽  
Weijian Zhou ◽  
...  

AbstractBackgroundImmune checkpoints play crucial roles in immune escape of cancer cells. However, the exact prognostic values of expression and methylation of programmed death 1 (PD-1), programmed death-ligand 1 (PD-L1) and PD-L2 in low-grade glioma (LGG) have not been defined yet.MethodsA total of 514 LGG samples from TCGA dataset containing both PD-1, PD-L1 and PD-L2 expression, DNA methylation, and survival data were enrolled into our study. The clinical significance of PD-1/PD-Ls expression and methylation in LGG were explored. Besides, the correlation between PD-1/PD-Ls expression and methylation with the infiltration levels of tumor-infiltrating immune cells (TIICs) was assessed. Moreover, GO enticement analysis of PD-1/PD-Ls co-expressed genes was performed as well. R 3.6.2 and GraphPad Prism 8 were applied as main tools for the statistical analysis and graphical exhibition.ResultsPD-1/PD-Ls had distinct co-expression patterns in LGG tissues. The expression and methylation status of PD-1/PD-Ls seemed to be various in different LGG subtypes. Besides, upregulated PD-1/PD-Ls expression and hypo-methylation of PD-1/PD-Ls were associated with worse survival in LGG patients. In addition, PD-1/PD-Ls expression was revealed to be positively associated with TIICs infiltration, while their methylation was negatively associated with TIICs infiltration. Moreover, the PD-1/PDLs correlated gene profiles screening and Gene Ontology (GO) enrichment analysis uncovered that PD-1/PDLs and their positively correlated gene mainly participated in immune response related biological processes.ConclusionsHigh expression and hypo-methylation of PD-1/PD-Ls significantly correlated with unfavorable survival in LGG patients, suggesting LGG patients may benefit from PD1/PD-Ls checkpoint inhibitors treatment.


2021 ◽  
Author(s):  
Hongjuan Niu ◽  
Peiqiong Chen ◽  
Lu Fan ◽  
Boyu Sun

Abstract Background: Increased evidence supports the relationship between chromobox protein homolog 3 (CBX3) and tumorigenesis of some cancers. However, the role of CBX3 in pan-cancers remains poorly defined. In the research, we aimed to investigate the prognostic value and the immunological functions of CBX3. Results: We explored the potential oncogenic roles of CBX3 in mRNA and protein levels based on the diverse databases, including the expression, the correlation with prognosis, tumor microenvironment (TME), DNA methylation, protein phosphorylation and enrichment analysis across all TCGA tumors. The results show that CBX3 is overexpressed in multiple cancers, and significant correlations exist between high expression and adverse prognosis in most tumor patients. We observed an enhanced phosphorylation level in uterine corpus endometrial carcinoma, colon cancer and lung adenocarcinoma. A distinct relationship was also found between CBX3 expression and TME, including immune infiltration of tumor-infiltrating lymphocytes (TILs) and cancer-associated fibroblasts (CAFs), immune score or matrix score, immune checkpoints. The correlative transcription factors and miRNAs of CBX3-binding hub genes were analyzed to investigate the molecular mechanism. Moreover, alcoholism and alteration of DNA cellular biology may be involved in the functional mechanisms of CBX3. Conclusion: The first pan-cancer study offers a relatively comprehensive cognition on the oncogenic roles of CBX3 as a prognostic and immunological marker in various malignant tumors.


2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Francesco Romano ◽  
Antonino Giulio Giannone ◽  
Sergio Siragusa ◽  
Rossana Porcasi ◽  
Ada Maria Florena

tumor immunotherapy is a rapidly evolving field. The discovery of the ability of neoplasms to evade the immune response has shifted the attention of the medical community to the underlying mechanisms of the immune response to tumors, highlighting the importance of so-called immune check points, including CTLA4, TIM-3 and PD-1.  an immune escape mechanism is the activation of the immune checkpoint pathway that contributes to the creation of an immunosuppressive microenvironment and therefore to tumor proliferation.although immune checkpoints have been extensively investigated in solid tumors, the same is not true for hematologic neoplasms, particularly for myeloid malignancies. our study is based on the evaluation of the activation of the PD-1 and PD-L1 pathway in the context of the bone marrow tumor microenvironment of patients with acute myeloid leukemia. To do so we evaluated  34 bone marrow biopsies of patients with acute myeloid leukemia comparing them to 10 controls using immunohistochemical methods.


2021 ◽  
Vol 11 ◽  
Author(s):  
Zaoqu Liu ◽  
Libo Wang ◽  
Long Liu ◽  
Taoyuan Lu ◽  
Dechao Jiao ◽  
...  

BackgroundFerroptosis is essential for tumorigenesis and progression of hepatocellular carcinoma (HCC). The heterogeneity of ferroptosis and its relationship with tumor microenvironment (TME) have still remain elusive.MethodsBased on 74 ferroptosis related genes (FRGs) and 3,933 HCC samples from 32 datasets, we comprehensively explored the heterogenous ferroptosis subtypes. The clinical significance, functional status, immune infiltration, immune escape mechanisms, and genomic alterations of different subtypes were further investigated.ResultsWe identified and validated two heterogeneous ferroptosis subtypes: C1 was metabolismlowimmunityhigh subtype and C2 was metabolismhighimmunitylow subtype. Compared to C2, C1 owned worse prognosis, and C1 tended to occur in the patients with clinical characteristics such as younger, female, advanced stage, higher grade, vascular invasion. C1 and C2 were more sensitive to immunotherapy and sorafenib, respectively. The immune escape mechanisms of C1 might be accumulating more immunosuppressive cells, inhibitory cytokines, and immune checkpoints, while C2 was mainly associated with inferior immunogenicity, defecting in antigen presentation, and lacking leukocytes. In addition, C1 was characterized by BAP1 mutation, MYC amplification, and SCD1 methylation, while C2 was characterized by the significant alterations in cell cycle and chromatin remodeling processes. We also constructed and validated a robust and promising signature termed ferroptosis related risk score (FRRS) for assessing prognosis and immunotherapy.ConclusionWe identified and validated two heterogeneous ferroptosis subtypes and a reliable risk signature which used to assess prognosis and immunotherapy. Our results facilitated the understood of ferroptosis as well as clinical management and precise therapy of HCC.


2021 ◽  
Vol 11 ◽  
Author(s):  
Zhiyong Zhang ◽  
Xin Zhang ◽  
Aimin Huang

BackgroundHistone deacetylase 6 (HDAC6) regulates cytoplasmic signaling networks through the deacetylation of various cytoplasmic substrates. Recent studies have identified the role of HDAC6 in tumor development and immune metabolism, but its specific function remains unclear.MethodsThe current study determined the role of HDAC6 in tumor metabolism and tumor immunity through a multi-database pan-cancer analysis. The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), and Cancer Cell Line Encyclopedia (CCLE) datasets were used to determine the expression levels, prognosis, tumor progression, immune checkpoints, and immune metabolism of HDAC6 in 33 tumors. Pathways, immune checkpoints, immune neoantigens, immune microenvironment, tumor mutational burden (TMB), microsatellite instability (MSI), DNA mismatch repair (MMR), and the value of methyltransferases. The R package was used for quantitative analysis and panoramic description.ResultsIn the present study, we determined that HDAC6 is differentially expressed in pan carcinomas, and by survival, we found that HDAC6 was generally associated with the prognosis of pancreatic adenocarcinoma, Thymoma, and uveal melanoma, where low expression of HDAC6 had a significantly worse prognosis. Secondly, through this experiment, we confirmed that HDAC6 expression level was associated with tumor immune infiltration and tumor microenvironment, especially in PAAD. Finally, HDAC6 was associated with immune neoantigen and immune checkpoint gene expression profiles in all cancers in addition to TMB and MSI in pan-cancers.ConclusionHDAC6 is differentially expressed in pan-cancers and plays an essential role in tumor metabolism and immunity. HDAC6 holds promise as a tumor potential prognostic marker, especially in colon cancer.


2021 ◽  
Author(s):  
Zijian Zhang ◽  
Jinggang Mo ◽  
Chong Jin ◽  
Hao Jiang ◽  
Zhongtao Liu ◽  
...  

Abstract Background: ATG101 plays a significant role in the occurrence and development of tumours by regulating autophagy. Our study aimed to research the correlation between the expression of ATG101 and tumour prognosis and its role in tumour immunity. Methods: First, integrated analysis of The Cancer Genome Atlas and Genotype-Tissue Expression portals were used to analyse the expression of ATG101. Then, we used Kaplan–Meier curves for survival analysis. Next, we analysed the relationship between ATG101 expression and six immune cells, the immune microenvironment and immune checkpoints. Besides, we analysed the relationship between the expression of ATG101 and methyltransferase. Finally, we used GSEA to study the function of ATG101 in COAD and LIHC. Results: Integrated analysis showed that ATG101 was overexpressed in different tumours. Kaplan–Meier curves found that ATG101 was associated with poor prognosis in most tumours. We found that that ATG101 can be used as a target and prognostic marker of tumour immunotherapy for different tumours. We also found that ATG101 regulates DNA methylation. GSEA analysis showed that ATG101 may play a critical role in COAD and LIHC.Conclusions: Our study highlights the significance of ATG101 in the study of tumour immunity from a pan-cancer perspective.


2020 ◽  
Vol 21 (7) ◽  
pp. 2286 ◽  
Author(s):  
Stefania Raimondo ◽  
Marzia Pucci ◽  
Riccardo Alessandro ◽  
Simona Fontana

The modulation of the immune system is one of the hallmarks of cancer. It is now widely described that cancer cells are able to evade the immune response and thus establish immune tolerance. The exploration of the mechanisms underlying this ability of cancer cells has always attracted the scientific community and is the basis for the development of new promising cancer therapies. Recent evidence has highlighted how extracellular vesicles (EVs) represent a mechanism by which cancer cells promote immune escape by inducing phenotypic changes on different immune cell populations. In this review, we will discuss the recent findings on the role of tumor-derived extracellular vesicles (TEVs) in regulating immune checkpoints, focusing on the PD-L1/PD-1 axis.


BMC Cancer ◽  
2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Yanlu Xiong ◽  
Jie Lei ◽  
Jinbo Zhao ◽  
Qiang Lu ◽  
Yangbo Feng ◽  
...  

Abstract Background Lung adenocarcinoma (LUAD) remains a crucial factor endangering human health. Gene-based clinical predictions could be of great help for cancer intervention strategies. Here, we tried to build a gene-based survival score (SS) for LUAD via analyzing multiple transcriptional datasets. Methods We first acquired differentially expressed genes between tumors and normal tissues from intersections of four LUAD datasets. Next, survival-related genes were preliminarily unscrambled by univariate Cox regression and further filtrated by LASSO regression. Then, we applied PCA to establish a comprehensive SS based on survival-related genes. Subsequently, we applied four independent LUAD datasets to evaluate prognostic prediction of SS. Moreover, we explored associations between SS and clinicopathological features. Furthermore, we assessed independent predictive value of SS by multivariate Cox analysis and then built prognostic models based on clinical stage and SS. Finally, we performed pathway enrichments analysis and investigated immune checkpoints expression underlying SS in four datasets. Results We established a 13 gene-based SS, which could precisely predict OS and PFS of LUAD. Close relations were elicited between SS and canonical malignant indictors. Furthermore, SS could serve as an independent risk factor for OS and PFS. Besides, the predictive efficacies of prognostic models were also reasonable (C-indexes: OS, 0.7; PFS, 0.7). Finally, we demonstrated enhanced cell proliferation and immune escape might account for high clinical risk of SS. Conclusions We built a 13 gene-based SS for prognostic prediction of LUAD, which exhibited wide applicability and could contribute to LUAD management.


Epigenomics ◽  
2020 ◽  
Vol 12 (16) ◽  
pp. 1457-1476
Author(s):  
Ning Kang ◽  
Mark Eccleston ◽  
Pier-Luc Clermont ◽  
Maryam Latarani ◽  
David Kingsley Male ◽  
...  

Immunotherapies are revolutionizing the clinical management of a wide range of cancers. However, intrinsic or acquired unresponsiveness to immunotherapies does occur due to the dynamic cancer immunoediting which ultimately leads to immune escape. The evolutionarily conserved histone modifier enhancer of zeste 2 (EZH2) is aberrantly overexpressed in a number of human cancers. Accumulating studies indicate that EZH2 is a main driver of cancer cells’ immunoediting and mediate immune escape through downregulating immune recognition and activation, upregulating immune checkpoints and creating an immunosuppressive tumor microenvironment. In this review, we overviewed the roles of EZH2 in cancer immunoediting, the preclinical and clinical studies of current pharmacologic EZH2 inhibitors and the prospects for EZH2 inhibitor and immunotherapy combination for cancer treatment.


Sign in / Sign up

Export Citation Format

Share Document