Physicochemical properties and in vitro digestion of extruded rice with grape seed proanthocyanidins

2020 ◽  
Vol 95 ◽  
pp. 103064 ◽  
Author(s):  
Yuxue Zheng ◽  
Jinhu Tian ◽  
Yukiharu Ogawa ◽  
Xiangli Kong ◽  
Shiguo Chen ◽  
...  
Molecules ◽  
2020 ◽  
Vol 25 (5) ◽  
pp. 1123 ◽  
Author(s):  
Zirui Zhang ◽  
Jinhu Tian ◽  
Haitian Fang ◽  
Huiling Zhang ◽  
Xiangli Kong ◽  
...  

Dietary intake of potato starch could induce a dramatic increase in blood glucose and is positively associated with chronic metabolic diseases (type II diabetes, cardiovascular disease, etc.). Grape seed proanthocyanidins (GSP) are known to decrease starch digestion by inhibiting digestive enzymes or changing the physicochemical properties of starch. In the present study, GSP were complexed with potato starch to prepare polyphenol–starch complexes. The physiochemical properties and digestibility of complexes were investigated by in vitro digestion model, X-ray diffraction, differential scanning calorimetry, rapid visco analyzer, Fourier transform infrared spectroscopy as well as texture profile analysis. Results indicated that the peak viscosity, breakdown, trough, and setback of the complexes disappeared, replaced by a special continuous increase in paste viscosity. The complexes showed a lower final viscosity and higher thermal stability with the increasing binding amount of GSP. GSP decreased the hardness of the complexes’ gel significantly. FT-IR indicated that GSP might interact with potato starch through noncovalent forces. Additionally, the complexes also showed a higher content of slowly digestible starch and resistant starch than that of the native starch. Thus, we inferred that the addition of GSP could modify the digestibility of potato starch and be an optional way to modify the starch with lower digestion.


Biomolecules ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 708 ◽  
Author(s):  
Sarah Fruehwirth ◽  
Sofie Zehentner ◽  
Mohammed Salim ◽  
Sonja Sterneder ◽  
Johanna Tiroch ◽  
...  

The intake of dietary lipids is known to affect the composition of phospholipids in gastrointestinal cells, thereby influencing passive lipid absorption. However, dietary lipids rich in polyunsaturated fatty acids, such as vegetable oils, are prone to oxidation. Studies investigating the phospholipid-regulating effect of oxidized lipids are lacking. We aimed at identifying the effects of oxidized lipids from moderately (18.8 ± 0.39 meq O2/kg oil) and highly (28.2 ± 0.39 meq O2/kg oil) oxidized and in vitro digested cold-pressed grape seed oils on phospholipids in human gastric tumor cells (HGT-1). The oils were analyzed for their antioxidant constituents as well as their oxidized triacylglycerol profile by LC-MS/MS before and after a simulated digestion. The HGT-1 cells were treated with polar oil fractions containing epoxidized and hydroperoxidized triacylglycerols for up to six hours. Oxidized triacylglycerols from grape seed oil were shown to decrease during the in vitro digestion up to 40% in moderately and highly oxidized oil. The incubation of HGT-1 cells with oxidized lipids from non-digested oils induced the formation of cellular phospholipids consisting of unsaturated fatty acids, such as phosphocholines PC (18:1/22:6), PC (18:2/0:0), phosphoserine PS (42:8) and phosphoinositol PI (20:4/0:0), by about 40%–60%, whereas the incubation with the in vitro digested oils did not affect the phospholipid metabolism. Hence, the gastric conditions inhibited the phospholipid-regulating effect of oxidized triacylglycerols (oxTAGs), with potential implications in lipid absorption.


2020 ◽  
Vol 8 (5) ◽  
pp. 654
Author(s):  
Ester Betoret ◽  
Noelia Betoret ◽  
Laura Calabuig-Jiménez ◽  
Cristina Barrera ◽  
Marco Dalla Rosa

In a new probiotic food, besides adequate physicochemical properties, it is necessary to ensure a minimum probiotic content after processing, storage, and throughout gastrointestinal (GI) digestion. The aim of this work was to study the effect of hot air drying/freeze drying processes, encapsulation, and storage on the probiotic survival and in vitro digestion resistance of Lactobacillus salivarius spp. salivarius included into an apple matrix. The physicochemical properties of the food products developed were also evaluated. Although freeze drying processing provided samples with better texture and color, the probiotic content and its resistance to gastrointestinal digestion and storage were higher in hot air dried samples. Non-encapsulated microorganisms in hot air dried apples showed a 79.7% of survival rate versus 40% of the other samples after 28 days of storage. The resistance of encapsulated microorganisms to in vitro digestion was significantly higher (p ≤ 0.05) in hot air dried samples, showing survival rates of 50–89% at the last stage of digestion depending on storage time. In freeze dried samples, encapsulated microorganisms showed a survival rate of 16–47% at the end of digestion. The different characteristics of the food matrix after both processes had a significant effect on the probiotic survival after the GI digestion. Documented physiological and molecular mechanisms involved in the stress response of probiotic cells would explain these results.


2004 ◽  
Vol 32 (01) ◽  
pp. 89-95 ◽  
Author(s):  
Zuo-Hui Shao ◽  
Terry L. Vanden Hoek ◽  
Chang-Qing Li ◽  
Paul T. Schumacker ◽  
Lance B. Becker ◽  
...  

Scutellaria baicalensis (SbE) is a commonly used Chinese herb medicine and grape seed proanthocyanidins is a popular herbal supplement in the United States. Both herbs have been shown to possess potent antioxidant effects. Using an in vitro model to produce the reactive oxygen species (ROS) generation ( H 2 O 2/ FeSO 4 for hydroxyl radicals, xanthine/xanthine oxidase for suproxide), we observed that Scutellaria baicalensis and grape seed proanthocyanidins acted synergistically to scavenge ROS. Our data suggest that a combination of these two herbs can potentially enhance their antioxidant efficacy, allowing lower dosages of each drug to be used. This has the advantage of avoiding possible side effects that may arise when higher doses of a single herb are used in an attempt to achieve a maximum degree of antioxidant activity.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Yijuan Huang ◽  
Hainan Zhao ◽  
Kun Cao ◽  
Ding Sun ◽  
Yanyong Yang ◽  
...  

We have demonstrated that grape seed proanthocyanidins (GSPs) could effectively scavenge hydroxyl radical (•OH) in a dose-dependent manner. Since most of the ionizing radiation- (IR-) induced injuries were caused by•OH, this study was to investigate whether GSPs would mitigate IR-induced injuries in vitro and in vivo. We demonstrated that GSPs could significantly reduce IR-induced DNA strand breaks (DSBs) and apoptosis of human lymphocyte AHH-1 cells. This study also showed that GSPs could protect white blood cells (WBC) from IR-induced injuries, speed up the weight of mice back, and decrease plasma malondialdehyde (MDA), thus improving the survival rates of mice after ionizing radiation. It is suggested that GSPs have a potential as an effective and safe radioprotective agent.


2020 ◽  
Vol 330 ◽  
pp. 127321
Author(s):  
Hui Xue ◽  
Yonggang Tu ◽  
Meng Xu ◽  
Mingfu Liao ◽  
Wenxiang Luo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document