Bioproducts from the pyrolysis of castor seed cake: Basic dye adsorption capacity of biochar and antifungal activity of the aqueous phase

2021 ◽  
Vol 9 (1) ◽  
pp. 104825
Author(s):  
Raquel V.S. Silva ◽  
Aline D. Gonçalves ◽  
Jonas O. Vinhal ◽  
Ricardo J. Cassella ◽  
Rodolpho C. Santos ◽  
...  
1994 ◽  
Vol 59 (3) ◽  
pp. 582-588
Author(s):  
Jan Souček ◽  
Ladislav Belický ◽  
Josef Havel

The protonation and distribution constants of dibenz[b, f]-1,4-oxazepin (CR) were measured. This substance forms stable ion-associates with Acid Red 88, extractable into chloroform. Reextraction with an aqueous phase containing basic fuchsine or safranine T brings about exchange of the CR cation for the basic dye cation. The associates so formed exhibit higher conditional extraction constants and higher molar absorptivities than the initial associates.


Author(s):  
Rodrigo Schneider ◽  
Murilo H. M. Facure ◽  
Augusto D. Alvarenga ◽  
Paulo A. M. Chagas ◽  
Danilo M. dos Santos ◽  
...  

1979 ◽  
Vol 12 (3) ◽  
pp. 307-317 ◽  
Author(s):  
Gordon McKay

2021 ◽  
Vol 10 (1) ◽  
pp. 59-66
Author(s):  
Son Le Lam ◽  
Phu Nguyen Vinh ◽  
Hieu Le Trung ◽  
Tan Le Thua ◽  
Nhan Dang Thi Thanh ◽  
...  

Glucomannan/graphene oxide (GM/GO) hydrogel was synthesized by using calcium hydroxide as the crosslinker. The synthesized material was characterized by using IR, XRD, SEM, EDX and RAMAN technology. The composite hydrogel was used for removal of organic dyes from aqueous solution. The results showed that the GM/GO hydrogel had a porous structure and a high adsorption capacity toward methylene blue (MB). The pseudo-second-order kinetic model could fit the rate equation of MB adsorption onto the GM/GO hydrogel. The adsorption of MB onto GM/GO hydrogel was a spontaneous process. In addition, the equilibrium adsorption isotherm data indicated that equilibrium data were fitted to the Langmuir isotherm and the maximum dye adsorption capacity was 198,69 mg.g-1. Moreover, the hydrogel was stable and easily recovered and adsorption capacity was around 97% of the initial saturation adsorption capacity after being used five times.


2016 ◽  
Vol 68 (2) ◽  
pp. 279-289 ◽  
Author(s):  
Jelena Jovicic-Petrovic ◽  
Sanja Jeremic ◽  
Ivan Vuckovic ◽  
Sandra Vojnovic ◽  
Aleksandra Bulajic ◽  
...  

Adding compost to soil can result in plant disease suppression through the mechanisms of antagonistic action of compost microflora against plant pathogens. The aim of the study was to select effective antagonists of Pythium aphanidermatum from compost, to assess the effect of its extracellular metabolites on the plant pathogen, and to characterize antifungal metabolites. The fungal isolate selected by a confrontation test was identified as Aspergillus piperis A/5 on the basis of morphological features and the internal transcribed spacer (ITS) region, ?-tubulin and calmodulin partial sequences. Liquid chromatography-mass spectroscopy (LC-MS) analysis showed that gluconic and citric acid were the most abundant in the organic culture extract. However, the main antifungal activity was contained in the aqueous phase remaining after the organic solvent extraction. The presence of considerable amounts of proteins in both the crude culture extract as well as the aqueous phase remaining after solvent extraction was confirmed by SDS-PAGE. Isolated Aspergillus piperis A/5 exhibits strong antifungal activity against the phytopathogen Pythium aphanidermatum. It secretes a complex mixture of metabolites consisting of small molecules, including gluconic acid, citric acid and itaconic acid derivatives, but the most potent antifungal activity was associated with proteins resistant to heat and organic solvents. Our findings about the activity and characterization of antagonistic strain metabolites contribute to the understanding of the mechanism of interaction of antifungal metabolites as well as fungal-fungal interaction. The obtained results provide a basis for further application development in agriculture and food processing.


2021 ◽  
Vol 44 (3) ◽  
Author(s):  
A. F Agboola

Since the cost of feed is increasing due to the keen competition between humans and animals, there is a need to critically seek for a matching alternative. Castor seed cake, a residue after the extraction of oil from nutrients-rich castor seed constitutes a waste which can be converted into livestock feed. Thus, the study was carried out to investigate the effect of graded levels of castor seed cake diets on haematological and serum biochemical indices of weanling albino rats in an experiment that lasted 21 days. Thirty weanling Wistar albino rats were weighed individually and randomly assigned to 5 dietary treatments with 3 replicates of two rats in a completely randomized design. Diet 1 was a nitrogen-free diet (NFD), while diets 2, 3, 4, and 5 had 0% (without castor seed cake inclusion), 2, 4 and 6% castor seed cake replacing soyabean meal respectively. At day 21, blood samples were obtained from two rats per replicate for haematological and serum analysis. There were no significant differences (P>0.05) observed in all the parameters (packed cell volume, haemaglobin, red blood cell, white blood cell, lymphocyte, neutrophil, monocyte, eosinophil and platelet) measured. Similarly, diet had no effect on the serum biochemical indices (creatinine, urea, total protein and globulin) measured. Significant difference (P<0.05) was however observed in albumin (2.62 – 3.18g/dL) of rats on the different experimental diets. The albumin concentrations of weanling albino rats on dietary treatments were similar to those on the control diet but significantly (P<0.05) higher (3.09 – 3.18g/dL) than those on the nitrogen free diet. It can be concluded that castor seed cake can replace soyabean meal up to 6% inclusion level without eliciting detrimental effect on blood profile of weanling wistar albino rats.


2015 ◽  
Vol 25 (3) ◽  
pp. 25-34 ◽  
Author(s):  
Laura Alicia Ramírez Llamas ◽  
Araceli Jacobo Azuara ◽  
J. Merced Martínez Rosales

In this paper, layered double hydroxides (LDH) were synthesized and characterized using techniques of Physisorption of Nitrogen, Infrared, Temperature Programmed Desorption, X-Ray Diffraction, TGA and Immersion Microcalorimetry, in order to determine the basic properties of the adsorbent. The methyl orange (MO) is used as a dye and as a result, it is frequently found in effluents from textile industries. The dye adsorption isotherms on LDH were studied as function of pH and temperature. The maximum adsorption capacity of methyl orange on LDH was carried out at pH 5, and the minimum adsorption capacity at pH 11, being 40.2 mg/g and 22.1 mg/g, respectively. Furthermore, the suitable temperature to promote the adsorption of methyl orange on LDH was at 25 °C, as at 35 °C shows a significant decrease. 


Molecules ◽  
2020 ◽  
Vol 25 (4) ◽  
pp. 1016 ◽  
Author(s):  
Monickarla da Silva ◽  
Felipe Barbosa ◽  
Marco Morales Torre ◽  
Jhonny Villarroel-Rocha ◽  
Karim Sapag ◽  
...  

The mixture containing alloy and oxide with iron-based phases has shown interesting properties compared to the isolated species and the synergy between the phases has shown positive effect on dye adsorption. This paper describes the synthesis of Fe2SiO4-Fe7Co3-based nanocomposite dispersed in Santa Barbara Amorphous (SBA)-15 and its application in dye adsorption followed by magnetic separation. Thus, it was studied the variation of reduction temperature and amount of hydrogen used in synthesis and the effect of these parameters on the physicochemical properties of the iron and cobalt based oxide/alloy mixture, as well as the methylene blue adsorption capacity. The XRD and Mössbauer results, along with the temperature-programmed reduction (TPR) profiles, confirmed the formation of Fe2SiO4-Fe7Co3-based nanocomposites. Low-angle XRD, N2 isotherms, and TEM images show the formation of the SBA-15 based mesoporous support with a high surface area (640 m2/g). Adsorption tests confirmed that the material reduced at 700 °C using 2% of H2 presented the highest adsorption capacity (49 mg/g). The nanocomposites can be easily separated from the dispersion by applying an external magnetic field. The interaction between the dye and the nanocomposite occurs mainly by π-π interactions and the mixture of the Fe2SiO4 and Fe7Co3 leads to a synergistic effect, which favor the adsorption.


2000 ◽  
Vol 42 (5-6) ◽  
pp. 355-362 ◽  
Author(s):  
H. Pignon ◽  
C. Brasquet ◽  
P. Le Cloirec

The aim of this work is to evaluate the efficiency of Activated Carbon Cloths (ACCs) as a refining treatment of membrane filtration in the case of effluent streams containing both dyes and suspended solids (SS) or colloids responsible for turbidity. It is divided into two parts. First, dye adsorption experiments are carried out. Kinetics and isotherms enable us to show the feasibility of the adsorption and to study the influence of different operating conditions. The results demonstrate that adsorption is enhanced under acidic conditions, the adsorption capacity being increased by 40% in some cases. Moreover, microscopic characteristics of ACCs have a great influence on the adsorption process: there is a relationship between the adsorbent porosity and the adsorbate molecular weight, the mesoporous adsorbent being more efficious to remove the larger molecular weight dyes. In the case of low molecular weight compounds, the adsorbent with the higher specific surface area provides the greater adsorption capacity. Molecular connectivity indexes were used to confirm the correlation of the molecular structure of the adsorbates with their adsorbability. The second part consists of an estimation of the efficiency of the coupling of ultrafiltration and adsorption onto ACC. Tests performed on a laboratory-scale coupling show that a molecular weight cut-off of 3,000 D gives rise to a 98% removal of turbidity whereas dyes are not much retained. Furthermore, ultrafiltration is useful in improving the adsorption capacities of ACC in a continuous flow reactor (up to 50%).


Sign in / Sign up

Export Citation Format

Share Document