ML3 LASSO (Least Absolute Shrinkage and Selection Operator) and XGBoost (eXtreme Gradient Boosting) Models for Predicting Depression-Related Work Impairment in US Working Adults

2021 ◽  
Vol 24 ◽  
pp. S11
Author(s):  
V. Li ◽  
H. Costantino ◽  
J. Rowland ◽  
L. Yue ◽  
S. Gupta
Information ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 514
Author(s):  
Fahad Rahman Amik ◽  
Akash Lanard ◽  
Ahnaf Ismat ◽  
Sifat Momen

Pre-owned cars (i.e., cars with one or more previous retail owners) are extremely popular in Bangladesh. Customers who plan to purchase a pre-owned car often struggle to find a car within a budget as well as to predict the price of a particular pre-owned car. Currently, Bangladesh lacks online services that can provide assistance to customers purchasing pre-owned cars. A good prediction of prices of pre-owned cars can help customers greatly in making an informed decision about buying a pre-owned car. In this article, we look into this problem and develop a forecasting system (using machine learning techniques) that helps a potential buyer to estimate the price of a pre-owned car he is interested in. A dataset is collected and pre-processed. Exploratory data analysis has been performed. Following that, various machine learning regression algorithms, including linear regression, LASSO (Least Absolute Shrinkage and Selection Operator) regression, decision tree, random forest, and extreme gradient boosting have been applied. After evaluating the performance of each method, the best-performing model (XGBoost) was chosen. This model is capable of properly predicting prices more than 91% of the time. Finally, the model has been deployed as a web application in a local machine so that this can be later made available to end users.


2020 ◽  
Vol 12 (17) ◽  
pp. 2825
Author(s):  
Guangyuan Zhang ◽  
Haiyue Lu ◽  
Jin Dong ◽  
Stefan Poslad ◽  
Runkui Li ◽  
...  

Air-borne particulate matter, PM2.5 (PM having a diameter of less than 2.5 micrometers), has aroused widespread concern and is a core indicator of severe air pollution in many cities globally. In our study, we present a validated framework to predict the daily PM2.5 distributions, exemplified by a use case of Shijiazhuang City, China, based on daily aerosol optical depth (AOD) datasets. The framework involves obtaining the high-resolution spatiotemporal AOD distributions, estimation of the spatial distributions of PM2.5 and the prediction of these based on a convolutional long short-term memory (ConvLSTM) model. In the estimation part, the eXtreme gradient boosting (XGBoost) model has been determined as the estimation model with the lowest root mean square error (RMSE) of 32.86 µg/m3 and the highest coefficient of determination regression score function (R2) of 0.71, compared to other common models used as a baseline for comparison (linear, ridge, least absolute shrinkage and selection operator (LASSO) and cubist). For the prediction part, after validation and comparison with a seasonal autoregressive integrated moving average (SARIMA), which is a traditional time-series prediction model, in both time and space, the ConvLSTM gives a more accurate performance for the prediction, with a total average prediction RMSE of 14.94 µg/m3 compared to SARIMA’s 17.41 µg/m3. Furthermore, ConvLSTM is more stable and with less fluctuations for the prediction of PM2.5 in time, and it can also eliminate better the spatial predicted errors compared to SARIMA.


2021 ◽  
Vol 9 (7) ◽  
pp. e003299
Author(s):  
Rivka R Colen ◽  
Christian Rolfo ◽  
Murat Ak ◽  
Mira Ayoub ◽  
Sara Ahmed ◽  
...  

The need to identify biomarkers to predict immunotherapy response for rare cancers has been long overdue. We aimed to study this in our paper, ‘Radiomics analysis for predicting pembrolizumab response in patients with advanced rare cancers’. In this response to the Letter to the Editor by Cunha et al, we explain and discuss the reasons behind choosing LASSO (Least Absolute Shrinkage and Selection Operator) and XGBoost (eXtreme Gradient Boosting) with LOOCV (Leave-One-Out Cross-Validation) as the feature selection and classifier method, respectively for our radiomics models. Also, we highlight what care was taken to avoid any overfitting on the models. Further, we checked for the multicollinearity of the features. Additionally, we performed 10-fold cross-validation instead of LOOCV to see the predictive performance of our radiomics models.


2019 ◽  
Author(s):  
Kasper Van Mens ◽  
Joran Lokkerbol ◽  
Richard Janssen ◽  
Robert de Lange ◽  
Bea Tiemens

BACKGROUND It remains a challenge to predict which treatment will work for which patient in mental healthcare. OBJECTIVE In this study we compare machine algorithms to predict during treatment which patients will not benefit from brief mental health treatment and present trade-offs that must be considered before an algorithm can be used in clinical practice. METHODS Using an anonymized dataset containing routine outcome monitoring data from a mental healthcare organization in the Netherlands (n = 2,655), we applied three machine learning algorithms to predict treatment outcome. The algorithms were internally validated with cross-validation on a training sample (n = 1,860) and externally validated on an unseen test sample (n = 795). RESULTS The performance of the three algorithms did not significantly differ on the test set. With a default classification cut-off at 0.5 predicted probability, the extreme gradient boosting algorithm showed the highest positive predictive value (ppv) of 0.71(0.61 – 0.77) with a sensitivity of 0.35 (0.29 – 0.41) and area under the curve of 0.78. A trade-off can be made between ppv and sensitivity by choosing different cut-off probabilities. With a cut-off at 0.63, the ppv increased to 0.87 and the sensitivity dropped to 0.17. With a cut-off of at 0.38, the ppv decreased to 0.61 and the sensitivity increased to 0.57. CONCLUSIONS Machine learning can be used to predict treatment outcomes based on routine monitoring data.This allows practitioners to choose their own trade-off between being selective and more certain versus inclusive and less certain.


Author(s):  
Mohammad Hamim Zajuli Al Faroby ◽  
Mohammad Isa Irawan ◽  
Ni Nyoman Tri Puspaningsih

Protein Interaction Analysis (PPI) can be used to identify proteins that have a supporting function on the main protein, especially in the synthesis process. Insulin is synthesized by proteins that have the same molecular function covering different but mutually supportive roles. To identify this function, the translation of Gene Ontology (GO) gives certain characteristics to each protein. This study purpose to predict proteins that interact with insulin using the centrality method as a feature extractor and extreme gradient boosting as a classification algorithm. Characteristics using the centralized method produces  features as a central function of protein. Classification results are measured using measurements, precision, recall and ROC scores. Optimizing the model by finding the right parameters produces an accuracy of  and a ROC score of . The prediction model produced by XGBoost has capabilities above the average of other machine learning methods.


2021 ◽  
Vol 13 (5) ◽  
pp. 1021
Author(s):  
Hu Ding ◽  
Jiaming Na ◽  
Shangjing Jiang ◽  
Jie Zhu ◽  
Kai Liu ◽  
...  

Artificial terraces are of great importance for agricultural production and soil and water conservation. Automatic high-accuracy mapping of artificial terraces is the basis of monitoring and related studies. Previous research achieved artificial terrace mapping based on high-resolution digital elevation models (DEMs) or imagery. As a result of the importance of the contextual information for terrace mapping, object-based image analysis (OBIA) combined with machine learning (ML) technologies are widely used. However, the selection of an appropriate classifier is of great importance for the terrace mapping task. In this study, the performance of an integrated framework using OBIA and ML for terrace mapping was tested. A catchment, Zhifanggou, in the Loess Plateau, China, was used as the study area. First, optimized image segmentation was conducted. Then, features from the DEMs and imagery were extracted, and the correlations between the features were analyzed and ranked for classification. Finally, three different commonly-used ML classifiers, namely, extreme gradient boosting (XGBoost), random forest (RF), and k-nearest neighbor (KNN), were used for terrace mapping. The comparison with the ground truth, as delineated by field survey, indicated that random forest performed best, with a 95.60% overall accuracy (followed by 94.16% and 92.33% for XGBoost and KNN, respectively). The influence of class imbalance and feature selection is discussed. This work provides a credible framework for mapping artificial terraces.


Author(s):  
Irfan Ullah Khan ◽  
Nida Aslam ◽  
Malak Aljabri ◽  
Sumayh S. Aljameel ◽  
Mariam Moataz Aly Kamaleldin ◽  
...  

The COVID-19 outbreak is currently one of the biggest challenges facing countries around the world. Millions of people have lost their lives due to COVID-19. Therefore, the accurate early detection and identification of severe COVID-19 cases can reduce the mortality rate and the likelihood of further complications. Machine Learning (ML) and Deep Learning (DL) models have been shown to be effective in the detection and diagnosis of several diseases, including COVID-19. This study used ML algorithms, such as Decision Tree (DT), Logistic Regression (LR), Random Forest (RF), Extreme Gradient Boosting (XGBoost), and K-Nearest Neighbor (KNN) and DL model (containing six layers with ReLU and output layer with sigmoid activation), to predict the mortality rate in COVID-19 cases. Models were trained using confirmed COVID-19 patients from 146 countries. Comparative analysis was performed among ML and DL models using a reduced feature set. The best results were achieved using the proposed DL model, with an accuracy of 0.97. Experimental results reveal the significance of the proposed model over the baseline study in the literature with the reduced feature set.


2021 ◽  
Vol 13 (6) ◽  
pp. 1147
Author(s):  
Xiangqian Li ◽  
Wenping Yuan ◽  
Wenjie Dong

To forecast the terrestrial carbon cycle and monitor food security, vegetation growth must be accurately predicted; however, current process-based ecosystem and crop-growth models are limited in their effectiveness. This study developed a machine learning model using the extreme gradient boosting method to predict vegetation growth throughout the growing season in China from 2001 to 2018. The model used satellite-derived vegetation data for the first month of each growing season, CO2 concentration, and several meteorological factors as data sources for the explanatory variables. Results showed that the model could reproduce the spatiotemporal distribution of vegetation growth as represented by the satellite-derived normalized difference vegetation index (NDVI). The predictive error for the growing season NDVI was less than 5% for more than 98% of vegetated areas in China; the model represented seasonal variations in NDVI well. The coefficient of determination (R2) between the monthly observed and predicted NDVI was 0.83, and more than 69% of vegetated areas had an R2 > 0.8. The effectiveness of the model was examined for a severe drought year (2009), and results showed that the model could reproduce the spatiotemporal distribution of NDVI even under extreme conditions. This model provides an alternative method for predicting vegetation growth and has great potential for monitoring vegetation dynamics and crop growth.


Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 655
Author(s):  
Huanhuan Zhang ◽  
Jigeng Li ◽  
Mengna Hong

With the global energy crisis and environmental pollution intensifying, tissue papermaking enterprises urgently need to save energy. The energy consumption model is essential for the energy saving of tissue paper machines. The energy consumption of tissue paper machine is very complicated, and the workload and difficulty of using the mechanism model to establish the energy consumption model of tissue paper machine are very large. Therefore, this article aims to build an empirical energy consumption model for tissue paper machines. The energy consumption of this model includes electricity consumption and steam consumption. Since the process parameters have a great influence on the energy consumption of the tissue paper machines, this study uses three methods: linear regression, artificial neural network and extreme gradient boosting tree to establish the relationship between process parameters and power consumption, and process parameters and steam consumption. Then, the best power consumption model and the best steam consumption model are selected from the models established by linear regression, artificial neural network and the extreme gradient boosting tree. Further, they are combined into the energy consumption model of the tissue paper machine. Finally, the models established by the three methods are evaluated. The experimental results show that using the empirical model for tissue paper machine energy consumption modeling is feasible. The result also indicates that the power consumption model and steam consumption model established by the extreme gradient boosting tree are better than the models established by linear regression and artificial neural network. The experimental results show that the power consumption model and steam consumption model established by the extreme gradient boosting tree are better than the models established by linear regression and artificial neural network. The mean absolute percentage error of the electricity consumption model and the steam consumption model built by the extreme gradient boosting tree is approximately 2.72 and 1.87, respectively. The root mean square errors of these two models are about 4.74 and 0.03, respectively. The result also indicates that using the empirical model for tissue paper machine energy consumption modeling is feasible, and the extreme gradient boosting tree is an efficient method for modeling energy consumption of tissue paper machines.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Moojung Kim ◽  
Young Jae Kim ◽  
Sung Jin Park ◽  
Kwang Gi Kim ◽  
Pyung Chun Oh ◽  
...  

Abstract Background Annual influenza vaccination is an important public health measure to prevent influenza infections and is strongly recommended for cardiovascular disease (CVD) patients, especially in the current coronavirus disease 2019 (COVID-19) pandemic. The aim of this study is to develop a machine learning model to identify Korean adult CVD patients with low adherence to influenza vaccination Methods Adults with CVD (n = 815) from a nationally representative dataset of the Fifth Korea National Health and Nutrition Examination Survey (KNHANES V) were analyzed. Among these adults, 500 (61.4%) had answered "yes" to whether they had received seasonal influenza vaccinations in the past 12 months. The classification process was performed using the logistic regression (LR), random forest (RF), support vector machine (SVM), and extreme gradient boosting (XGB) machine learning techniques. Because the Ministry of Health and Welfare in Korea offers free influenza immunization for the elderly, separate models were developed for the < 65 and ≥ 65 age groups. Results The accuracy of machine learning models using 16 variables as predictors of low influenza vaccination adherence was compared; for the ≥ 65 age group, XGB (84.7%) and RF (84.7%) have the best accuracies, followed by LR (82.7%) and SVM (77.6%). For the < 65 age group, SVM has the best accuracy (68.4%), followed by RF (64.9%), LR (63.2%), and XGB (61.4%). Conclusions The machine leaning models show comparable performance in classifying adult CVD patients with low adherence to influenza vaccination.


Sign in / Sign up

Export Citation Format

Share Document