Effects of deposition time and RF power on the film characteristics of magnetron sputtered silicon carbide thin films

Author(s):  
O.P. Oladijo ◽  
M.R. Sanjay ◽  
L.L. Collieus ◽  
S. Siengchin ◽  
L. Moloisane ◽  
...  
1993 ◽  
Vol 297 ◽  
Author(s):  
A. Rubino ◽  
M.L. Addonizio ◽  
G. Conte ◽  
G. Nobile ◽  
E. Terzini ◽  
...  

Boron and phosphorus doped high conductivity microcrystalline thin films were deposited in a PECVD reactor. We report conductivities as high as 3 and 41 S/cm for B and P doped materials respectively on films deposited at 210 °C. The conductivity as well as the microcrystalline fraction increase for the n layer with decreasing RF power, while, for the p material, an increase of power is needed to improve the film characteristics. The conductivity prefactor (σo) as well as the conductivity (σ) itself as a function of the activation energy (Ea) show a slope inversion for both n and p materials at an activation energy or about 40 meV and 80 meV respectively. Different possible transport mechanisms are examined in order to explain the experimental data.


2012 ◽  
Vol 49 (1) ◽  
pp. 375-382 ◽  
Author(s):  
H. S. Medeiros ◽  
R. S. Pessoa ◽  
H. S. Maciel ◽  
M. Massi ◽  
L. L. Tezani ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
B. Dey ◽  
S. Bulou ◽  
T. Gaulain ◽  
W. Ravisy ◽  
M. Richard-Plouet ◽  
...  

AbstractPhotocatalytic surfaces have the potentiality to respond to many of nowadays societal concerns such as clean H2 generation, CO2 conversion, organic pollutant removal or virus inactivation. Despite its numerous superior properties, the wide development of TiO2 photocatalytic surfaces suffers from important drawbacks. Hence, the high temperature usually required (> 450 °C) for the synthesis of anatase TiO2 is still a challenge to outreach. In this article, we report the development and optimisation of an ECWR-PECVD process enabling the deposition of anatase TiO2 thin films at low substrate temperature. Scanning of experimental parameters such as RF power and deposition time was achieved in order to maximise photocatalytic activity. The careful selection of the deposition parameters (RF power, deposition time and plasma gas composition) enabled the synthesis of coatings exhibiting photocatalytic activity comparable to industrial references such as P25 Degussa and Pilkington Activ at a substrate temperature below 200 °C. In addition, to further decrease the substrate temperature, the interest of pulsing the plasma RF source was investigated. Using a duty cycle of 50%, it is thus possible to synthesise photocatalytic anatase TiO2 thin films at a substrate temperature below 115 °C with a deposition rate around 10 nm/min.


Author(s):  
S.K. Streiffer ◽  
C.B. Eom ◽  
J.C. Bravman ◽  
T.H. Geballet

The study of very thin (<15 nm) YBa2Cu3O7−δ (YBCO) films is necessary both for investigating the nucleation and growth of films of this material and for achieving a better understanding of multilayer structures incorporating such thin YBCO regions. We have used transmission electron microscopy to examine ultra-thin films grown on MgO substrates by single-target, off-axis magnetron sputtering; details of the deposition process have been reported elsewhere. Briefly, polished MgO substrates were attached to a block placed at 90° to the sputtering target and heated to 650 °C. The sputtering was performed in 10 mtorr oxygen and 40 mtorr argon with an rf power of 125 watts. After deposition, the chamber was vented to 500 torr oxygen and allowed to cool to room temperature. Because of YBCO’s susceptibility to environmental degradation and oxygen loss, the technique of Xi, et al. was followed and a protective overlayer of amorphous YBCO was deposited on the just-grown films.


Author(s):  
Minakshi Chaudhary ◽  
Yogesh Hase ◽  
Ashwini Punde ◽  
Pratibha Shinde ◽  
Ashish Waghmare ◽  
...  

: Thin films of PbS were prepared onto glass substrates by using a simple and cost effective CBD method. Influence of deposition time on structural, morphology and optical properties have been investigated systematically. The XRD analysis revealed that PbS films are polycrystalline with preferred orientation in (200) direction. Enhancement in crystallinity and PbS crystallite size has been observed with increase in deposition time. Formation of single phase PbS thin films has been further confirmed by Raman spectroscopy. The surface morphology analysis revealed the formation of prismatic and pebble-like PbS particles and with increase in deposition time these PbS particles are separated from each other without secondary growth. The data obtained from the EDX spectra shows the formation of high-quality but slightly sulfur rich PbS thin films over the entire range of deposition time studied. All films show increase in absorption with increase in deposition time and a strong absorption in the visible and sub-band gap regime of NIR range of the spectrum with red shift in band edge. The optical band gap shows decreasing trend, as deposition time increases but it is higher than the band gap of bulk PbS.


1995 ◽  
Vol 403 ◽  
Author(s):  
T. S. Hayes ◽  
F. T. Ray ◽  
K. P. Trumble ◽  
E. P. Kvam

AbstractA refined thernodynamic analysis of the reaction between molen Al and SiC is presented. The calculations indicate much higher Si concentrations for saturation with respect to AkC 3 formation than previously reported. Preliminary microstructural studies confirm the formation of interfacial A14C3 for pure Al thin films on SiC reacted at 9000C. The implications of the calculations and experimental observations for the production of ohmic contacts to p-type SiC are discussed.


2012 ◽  
Vol 526 ◽  
pp. 221-224 ◽  
Author(s):  
A. Amaral ◽  
P. Brogueira ◽  
O. Conde ◽  
G. Lavareda ◽  
C. Nunes de Carvalho

2018 ◽  
Vol 17 (03) ◽  
pp. 1760039
Author(s):  
K. M. Dhanisha ◽  
M. Manoj Christopher ◽  
M. Abinaya ◽  
P. Deepak Raj ◽  
M. Sridharan

The present work deals with NiO/Si3N4 layers formed by depositing nickel oxide (NiO) thin films over silicon nitrate (Si3N[Formula: see text] thin films. NiO films were coated on Si3N4-coated Si substrate using magnetron sputtering method by changing duration of coating time and were analyzed using X-ray diffractometer, field emission-scanning electron microscopy, UV–Vis spectrophotometer and four-point probe method to study the influence of thickness on physical properties. Crystallinity of the deposited films increases with increase in thickness. All films exhibited spherical-like structure, and with increase in deposition time, grains are coalesced to form smooth surface morphology. The optical bandgap of NiO films was found to decrease from 3.31[Formula: see text]eV to 3.22[Formula: see text]eV with upsurge in the thickness. The film deposited for 30[Formula: see text]min exhibits temperature coefficient resistance of [Formula: see text]1.77%/[Formula: see text]C as measured at 80[Formula: see text]C.


2008 ◽  
Vol 516 (12) ◽  
pp. 3855-3861 ◽  
Author(s):  
Kun Xue ◽  
Li-Sha Niu ◽  
Hui-Ji Shi ◽  
Jiwen Liu

Sign in / Sign up

Export Citation Format

Share Document