scholarly journals Brown adipocytes can display a mammary basal myoepithelial cell phenotype in vivo

2017 ◽  
Vol 6 (10) ◽  
pp. 1198-1211 ◽  
Author(s):  
Li Li ◽  
Baoguo Li ◽  
Min Li ◽  
Chaoqun Niu ◽  
Guanlin Wang ◽  
...  
Cancers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1469
Author(s):  
Hanmin Wang ◽  
Evgeny Chirshev ◽  
Nozomi Hojo ◽  
Tise Suzuki ◽  
Antonella Bertucci ◽  
...  

We aimed to determine the mechanism of epithelial–mesenchymal transition (EMT)-induced stemness in cancer cells. Cancer relapse and metastasis are caused by rare stem-like cells within tumors. Studies of stem cell reprogramming have linked let-7 repression and acquisition of stemness with the EMT factor, SNAI1. The mechanisms for the loss of let-7 in cancer cells are incompletely understood. In four carcinoma cell lines from breast cancer, pancreatic cancer, and ovarian cancer and in ovarian cancer patient-derived cells, we analyzed stem cell phenotype and tumor growth via mRNA, miRNA, and protein expression, spheroid formation, and growth in patient-derived xenografts. We show that treatment with EMT-promoting growth factors or SNAI1 overexpression increased stemness and reduced let-7 expression, while SNAI1 knockdown reduced stemness and restored let-7 expression. Rescue experiments demonstrate that the pro-stemness effects of SNAI1 are mediated via let-7. In vivo, nanoparticle-delivered siRNA successfully knocked down SNAI1 in orthotopic patient-derived xenografts, accompanied by reduced stemness and increased let-7 expression, and reduced tumor burden. Chromatin immunoprecipitation demonstrated that SNAI1 binds the promoters of various let-7 family members, and luciferase assays revealed that SNAI1 represses let-7 transcription. In conclusion, the SNAI1/let-7 axis is an important component of stemness pathways in cancer cells, and this study provides a rationale for future work examining this axis as a potential target for cancer stem cell-specific therapies.


Pharmacology ◽  
2017 ◽  
Vol 101 (1-2) ◽  
pp. 64-71 ◽  
Author(s):  
Tetsuhiro Horie ◽  
Kazuya Fukasawa ◽  
Takashi Iezaki ◽  
Gyujin Park ◽  
Yuki Onishi ◽  
...  

The availability of amino acid in the brown adipose tissue (BAT) has been shown to be altered under various conditions; however, little is known about the possible expression and pivotal role of amino acid transporters in BAT under physiological and pathological conditions. The present study comprehensively investigated whether amino acid transporters are regulated by obesogenic conditions in BAT in vivo. Moreover, we investigated the mechanism underlying the regulation of the expression of amino acid transporters by various stressors in brown adipocytes in vitro. The expression of solute carrier family 38 member 1 (Slc38a1; gene encoding sodium-coupled neutral amino acid transporter 1) was preferentially upregulated in the BAT of both genetic and acquired obesity mice in vivo. Moreover, the expression of Slc38a1 was induced by hypoxic stress through hypoxia-inducible factor-1α, which is a master transcription factor of the adaptive response to hypoxic stress, in brown adipocytes in vitro. These results indicate that Slc38a1 is an obesity-associated gene in BAT and a hypoxia-responsive gene in brown adipocytes.


Hypertension ◽  
2012 ◽  
Vol 60 (suppl_1) ◽  
Author(s):  
Ruth M Castellanos Rivera ◽  
Ellen S. Pentz ◽  
Kenneth W. Gross ◽  
Silvia Medrano ◽  
Jing Yu ◽  
...  

RBP-J , the major downstream effector of Notch signaling, is necessary to maintain the number of juxtaglomerular (JG) cells. In addition, RBP-J regulates the plasticity of arteriolar smooth muscle cells to adopt the renin cell phenotype when homeostasis is threatened. We hypothesized that RBP-J acts as an on/off switch controlling the expression of genes that determine the renin phenotype. To determine whether RBP-J directly affects renin gene expression, we generated mice harboring a bacterial artificial chromosome (BAC) transgene with green fluorescent protein (GFP) under the control of the renin gene carrying a mutation in its RBP-J- binding site (Mut-BAC). Mut-BAC mice had markedly reduced GFP expression to 12.9 % ±0.01 (n=3) of the control (Wt-BAC) and a diminished response to homeostatic challenges: mut-BAC mice had a reduced number of GFP positive JG areas per total number of glomeruli (Wt-BAC: 25.1 % ±3.0, n=3; Mut-BAC: 9.3 % ±1.4, n=2, p<0.02) and no GFP expression along the arterioles. To determine whether the decrease in the number of JG cells in mice lacking RBP-J (cKO) was due to a diminished endowment of renin progenitor cells, we traced the fate of cells derived from the renin lineage by generating mice ( RBP-J fl/fl ; Ren1d +/cre ; R26R +/- ) in which cells lacking RBP-J simultaneously expressed β-galactosidase (β-gal). The pattern of β-gal in cKO and control kidneys was identical, indicating that cells derived from the renin lineage did not die but instead changed their phenotype. Next we investigated the phenotype adopted by the cells derived from the renin lineage. Expression of α-smooth muscle actin and smoothelin (a marker of mature smooth muscle) was significantly decreased to 41 % ±7.0 (n=2) and 44 % ±8.8 (n=2) respectively with respect to controls (p<0.01). In addition, mutant JG cells in vivo did not express genes characteristic of the renin phenotype such as renin, calponin1, Nfat and Akr1b7 expressing instead fibroblast-specific protein 1 indicating the adoption of a fibroblast-like phenotype. Results indicate that RBP-J directly governs a genetic program that controls the dual endocrine-contractile phenotype of the JG cell, which is crucial to maintain blood pressure and fluid-electrolyte homeostasis.


1999 ◽  
Vol 123 (10) ◽  
pp. 949-951
Author(s):  
Carol S. Marshall ◽  
Denis Dwyre ◽  
Robin Eckert ◽  
Liisa Russell

Abstract A 35-year-old gravida 3, para 3 Filipino woman with a negative antibody screen, no prior history of transfusion, and no hemolytic disease of the newborn in her children suffered a massive postpartum hemorrhage requiring transfusion. A severe hemolytic transfusion reaction occurred 5 days after delivery. Subsequently, a panagglutinin on a routine antibody identification panel was identified as anti-Jk3. The patient's red blood cell phenotype was Jk(a−b−) and all of her children were Jk(a−b+), yet the antibody that formed reacted with equal strength against all Jka- or Jkb-positive cells. The rare Jk(a−b−) phenotype is more common in Polynesians. Anti-Jk3, like other Kidd system antibodies, is difficult to detect because in vivo production may be absent between provocative episodes and because these antibodies often show weak in vitro reactions. The increasing numbers of Pacific Islanders in the United States could result in more frequent encounters with this rare phenotype. Increased awareness of ethnic variability in blood phenotypes and of the capricious nature of Kidd antibodies can help pathologists and technologists deal more effectively with these cases.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Wei Xin Cai ◽  
Li Wu Zheng ◽  
Li Ma ◽  
Hong Zhang Huang ◽  
Ru Qing Yu ◽  
...  

Tumorigenicity and metastatic activity can be visually monitored in cancer cells that were labelled with stable fluorescence. The aim was to establish and validate local and distant spread of subcutaneously previously injected fluorescence transduced human tongue cancer cell lines of epithelial and mesenchymal phenotype in nude mice. A total of 32 four-week-old male athymic Balb/c nude mice were randomly allocated into 4 groups (n=8). A single dose of 0.3 mL PBS containing 1 × 107 of four different cancer cell-lines (UM1, UM1-GFP, UM2, and UM2-RFP) was injected subcutaneously into the right side of their posterolateral back. Validity assessment of the labelled cancer cells’ tumorigenicity was assessed by physical examination, imaging, and histology four weeks after the injection. The tumor take rate of cancer cells was similar in animals injected with either parental or transduced cancer cells. Transduced cancer cells in mice were easily detectable in vivo and after cryosection using fluorescent imaging. UM1 cells showed increased tumor take rate and mean tumor volume, presenting with disorganized histopathological patterns. Fluorescence labelled epithelial and mesenchymal human tongue cancer cell lines do not change in tumorigenicity or cell phenotype after injection in vivo.


2017 ◽  
Vol 49 (8) ◽  
pp. 416-429 ◽  
Author(s):  
Ivana Mižíková ◽  
Francesco Palumbo ◽  
Tamás Tábi ◽  
Susanne Herold ◽  
István Vadász ◽  
...  

Lysyl oxidases are credited with pathogenic roles in lung diseases, including cancer, fibrosis, pulmonary hypertension, congenital diaphragmatic hernia, and bronchopulmonary dysplasia (BPD). Lysyl oxidases facilitate the covalent intra- and intermolecular cross-linking of collagen and elastin fibers, thereby imparting tensile strength to the extracellular matrix (ECM). Alternative ECM-independent roles have recently been proposed for lysyl oxidases, including regulation of growth factor signaling, chromatin remodeling, and transcriptional regulation, all of which impact cell phenotype. We demonstrate here that three of the five lysyl oxidase family members, Lox, Loxl1, and Loxl2, are highly expressed in primary mouse lung fibroblasts compared with other constituent cell types of the lung. Microarray analyses revealed that small interfering RNA knockdown of Lox, Loxl1, and Loxl2 was associated with apparent changes in the expression of 134, 3,761, and 3,554 genes, respectively, in primary mouse lung fibroblasts. The impact of lysyl oxidase expression on steady-state Mmp3, Mmp9, Eln, Rarres1, Gdf10, Ifnb1, Csf2, and Cxcl9 mRNA levels was validated, which is interesting, since the corresponding gene products are relevant to lung development and BPD, where lysyl oxidases play a functional role. In vivo, the expression of these genes broadly correlated with Lox, Loxl1, and Loxl2 expression in a mouse model of BPD. Furthermore, β-aminopropionitrile (BAPN), a selective lysyl oxidase inhibitor, did not affect the steady-state mRNA levels of lysyl oxidase target genes, in vitro in lung fibroblasts or in vivo in BAPN-treated mice. This study is the first to report that lysyl oxidases broadly influence the cell transcriptome.


2020 ◽  
Vol 117 (20) ◽  
pp. 11085-11096 ◽  
Author(s):  
Kruttika Bhat ◽  
Mohammad Saki ◽  
Erina Vlashi ◽  
Fei Cheng ◽  
Sara Duhachek-Muggy ◽  
...  

Glioblastoma (GBM) is the deadliest adult brain cancer, and all patients ultimately succumb to the disease. Radiation therapy (RT) provides survival benefit of 6 mo over surgery alone, but these results have not improved in decades. We report that radiation induces a glioma-initiating cell phenotype, and we have identified trifluoperazine (TFP) as a compound that interferes with this phenotype conversion. TFP causes loss of radiation-induced Nanog mRNA expression, and activation of GSK3 with consecutive posttranslational reduction in p-Akt, Sox2, and β-catenin protein levels. TFP did not alter the intrinsic radiation sensitivity of glioma-initiating cells (GICs). Continuous treatment with TFP and a single dose of radiation reduced the number of GICs in vivo and prolonged survival in syngeneic and patient-derived orthotopic xenograft (PDOX) mouse models of GBM. Our findings suggest that the combination of a dopamine receptor antagonist with radiation enhances the efficacy of RT in GBM by preventing radiation-induced phenotype conversion of radiosensitive non-GICs into treatment-resistant, induced GICs (iGICs).


2020 ◽  
Vol 217 (7) ◽  
Author(s):  
Xueli Zhang ◽  
Ying Wang ◽  
Jian Song ◽  
Hanna Gerwien ◽  
Omar Chuquisana ◽  
...  

The endothelial cell basement membrane (BM) is a barrier to migrating leukocytes and a rich source of signaling molecules that can influence extravasating cells. Using mice lacking the major endothelial BM components, laminin 411 or 511, in murine experimental autoimmune encephalomyelitis (EAE), we show here that loss of endothelial laminin 511 results in enhanced disease severity due to increased T cell infiltration and altered polarization and pathogenicity of infiltrating T cells. In vitro adhesion and migration assays reveal higher binding to laminin 511 than laminin 411 but faster migration across laminin 411. In vivo and in vitro analyses suggest that integrin α6β1- and αvβ1-mediated binding to laminin 511–high sites not only holds T cells at such sites but also limits their differentiation to pathogenic Th17 cells. This highlights the importance of the interface between the endothelial monolayer and the underlying BM for modulation of immune cell phenotype.


Blood ◽  
1984 ◽  
Vol 63 (5) ◽  
pp. 1133-1140 ◽  
Author(s):  
WC Chan ◽  
I Check ◽  
C Schick ◽  
RK Brynes ◽  
J Kateley ◽  
...  

Abstract We report four patients with expansion of a unique population of lymphocytes that is consistently associated with neutropenia. Two patients also had rheumatoid arthritis and autoantibodies. The lymphocytes contained many cytoplasmic azurophilic granules, which possessed strong acid phosphatase activity. Multiple cytoplasmic parallel tubular arrays were observed ultrastructurally. These granular lymphocytes showed the T suppressor/cytotoxic cell phenotype (E+, OKT3+, OKT8+, OKT4-, OKM1-, OKI1-) and exhibited antibody-dependent cell-mediated cytotoxic activity but little or no natural killer cytotoxicity. They did not respond to recall antigens, concanavalin A, or pokeweed mitogen, but the cells from one patient did respond to phytohemagglutinin. No in vitro suppressor cell activity on mitogenic responses of allogeneic cells and on mixed lymphocyte cultures could be demonstrated. There was no evidence of suppression of immunoglobulin synthesis in vivo. It is uncertain that the expansion of this subset of lymphocytes represents a leukemic process. Their constant association with neutropenia, however, raises the possibility that the increase in large granular lymphocytes and neutropenia might be pathogenetically related.


Sign in / Sign up

Export Citation Format

Share Document