Polyaniline and magnetite on curaua fibers for molecular interface improvement with a cement matrix

2021 ◽  
Vol 1233 ◽  
pp. 130101
Author(s):  
Fernanda Veloso de Carvalho ◽  
Kaushik Pal ◽  
Fernando Gomes de Souza Junior ◽  
Romildo Dias Toledo Filho ◽  
Thuanny Moraes de Almeida ◽  
...  
Keyword(s):  
Author(s):  
Fernando Benedicto Mainier ◽  
Viktor Labuto Fragoso Sereno Ramos ◽  
Claudio Fernando Mahler

This study presents the results of the mechanical characterization of cement composites reinforced with short fibers of jute, sisal and curauá. Tests of direct tension in flexion and traction, after wetting and drying cycle (5 cycles) to determine the first crack were performed to determine the first crack, the tension and post-peak toughness and strengh of the composites. To ensure the the composite durability, the ordinary Portland cement matrix was modified by adding metakaolin, to consume the calcium hydroxide generated during Portland cement hydration. The composites were produced using short fibers of jute, sisal and curauá (50 mm) at levels of 2%, 4% and 6% of sisal and white curauá, and 3%, 6% and 9% to jute. The fibers of jute and white curauá employed in this study came from the Brazilian Amazon, while the sisal came from the Brazilian Northeast.This fibers have great economic importance in the producing region. Composites with high toughness, strength and multiple cracking processes under bending load were obtained when volume fractions equal to 3% of jute were used as reinforcement and when 6% of sisal and 4% of white curauá were used as reinforcement.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2127
Author(s):  
Richard Fürst ◽  
Eliška Fürst ◽  
Tomáš Vlach ◽  
Jakub Řepka ◽  
Marek Pokorný ◽  
...  

Textile-reinforced concrete (TRC) is a material consisting of high-performance concrete (HPC) and tensile reinforcement comprised of carbon roving with epoxy resin matrix. However, the problem of low epoxy resin resistance at higher temperatures persists. In this work, an alternative to the epoxy resin matrix, a non-combustible cement suspension (cement milk) which has proven stability at elevated temperatures, was evaluated. In the first part of the work, microscopic research was carried out to determine the distribution of particle sizes in the cement suspension. Subsequently, five series of plate samples differing in the type of cement and the method of textile reinforcement saturation were designed and prepared. Mechanical experiments (four-point bending tests) were carried out to verify the properties of each sample type. It was found that the highest efficiency of carbon roving saturation was achieved by using finer ground cement (CEM 52.5) and the pressure saturation method. Moreover, this solution also exhibited the best results in the four-point bending test. Finally, the use of CEM 52.5 in the cement matrix appears to be a feasible variant for TRC constructions that could overcome problems with its low temperature resistance.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4304
Author(s):  
Markssuel Teixeira Marvila ◽  
Afonso Rangel Garcez de de Azevedo ◽  
Paulo R. de de Matos ◽  
Sergio Neves Monteiro ◽  
Carlos Maurício Fontes Vieira

This review article proposes the identification and basic concepts of materials that might be used for the production of high-performance concrete (HPC) and ultra-high-performance concrete (UHPC). Although other reviews have addressed this topic, the present work differs by presenting relevant aspects on possible materials applied in the production of HPC and UHPC. The main innovation of this review article is to identify the perspectives for new materials that can be considered in the production of novel special concretes. After consulting different bibliographic databases, some information related to ordinary Portland cement (OPC), mineral additions, aggregates, and chemical additives used for the production of HPC and UHPC were highlighted. Relevant information on the application of synthetic and natural fibers is also highlighted in association with a cement matrix of HPC and UHPC, forming composites with properties superior to conventional concrete used in civil construction. The article also presents some relevant characteristics for the application of HPC and UHPC produced with alkali-activated cement, an alternative binder to OPC produced through the reaction between two essential components: precursors and activators. Some information about the main types of precursors, subdivided into materials rich in aluminosilicates and rich in calcium, were also highlighted. Finally, suggestions for future work related to the application of HPC and UHPC are highlighted, guiding future research on this topic.


2018 ◽  
Vol 170 ◽  
pp. 03030 ◽  
Author(s):  
Rustem Mukhametrakhimov ◽  
Liliya Lukmanova

The paper studies features of the hydration process of the modified blended cement for fiber cement panels (FCP) using differential thermal analysis, X-ray diffraction analysis, electron microscopy and infrared spectroscopy. It is found that deeper hydration process in silicate phase, denser and finer crystalline structure form in fiber cement matrix based on the modified blended cement. Generalization of this result to the case of fiber cement panels makes it possible to achieve formation of a denser and homogeneous structure with increased physical and mechanical properties.


2014 ◽  
Vol 53 (2) ◽  
pp. 309-317 ◽  
Author(s):  
Ahmed M. Diab ◽  
Hafez E. Elyamany ◽  
Ali Hassan Ali

2012 ◽  
Vol 174-177 ◽  
pp. 751-756
Author(s):  
Zi Fang Xu ◽  
Ming Xu Zhang ◽  
Jin Hua Li

In order to notably improve the mechanical properties and durability of low-grade cement-based material, superfine silica fume was used to modify the cement-based composite based on special perfomance and effects of nano powder. The mechanical performance and durability were investigated.Then the phase compositions,microstructure and morphologies of as-received cement-based composite were studied by X-ray Diffractometer、TGA-DTA and SEM. The results show that: the best formula of raw materials is 1:1:0.025:0.015, and hydration can be accelerated and increasing of hydration products is observed after modification. In the hardened cement matrix, microstructure is very compacted and C-S-H gel forms densed structure, so the structure defect is notably reduced. This means that both strength and durability of cement-based composite are notably improved by the addition of superfine silica fume.


2014 ◽  
Vol 624 ◽  
pp. 189-196 ◽  
Author(s):  
Valeria Corinaldesi ◽  
Jacopo Donnini ◽  
Giorgia Mazzoni

The use of composites with cement matrix seems to acquire an increasing interest in applications to masonry structures, due to their low impact, and a deeper understanding of the mechanical interaction between support and reinforcement is certainly necessary. The effectiveness of these interventions strongly depends on the bond between strengthening material and masonry, on the fibers/matrix interface, as well as on the mechanical properties of the masonry substrate [1]. In this work the attention was focused on the possible improvement of the bond between FRCM and masonry by means of an inorganic primer, which can be spread on the ceramic support before the application of FRCM reinforcement. Two different kinds of brick were tested, in order to simulate more or less porous masonry supports. Results obtained showed that, independently on the kind of brick used (more or less porous) the presence of an inorganic primer always improves bond between masonry support and the cementitiuos matrix of FRCM. In fact, the cementitous matrix of FRCM has been studied and optimized in order to guarantee the best fibers/matrix interface, while it is not necessarily the best option for improving the adhesion with the masonry support. In particular, very effective seems to be the use of very fine inorganic particles (at nanometric scale), which proved to be able to assure the best results in terms of bond strength. Also the fresh consistence of the primer seemed to influence the final result.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Oscar A. Mendoza Reales ◽  
Caterin Ocampo ◽  
Yhan Paul Arias Jaramillo ◽  
Juan Carlos Ochoa Botero ◽  
Jorge Hernán Quintero ◽  
...  

Decoupling the individual effects of multiwalled carbon nanotubes (MWCNTs) and surfactants when used as reinforcement materials in cement-based composites is aimed in this study. Powder MWCNTs were dispersed in deionized water using different types of surfactants as chemical dispersing agents and an ultrasonic tip processor. Cement pastes with carbon nanotubes additions of 0.15% by mass of cement were produced in two steps: first, the MWCNT/surfactant dispersions were combined with the mixing water, and then, cement was added and mixed until a homogeneous paste was obtained. Mechanical properties of the pastes cured at 7 days were measured, and their fracture behavior was characterized using the linear elastic finite element analysis. It was found that the reinforcing effect of MWCNT was masked by the negative effect of surfactants in the cement matrix; nevertheless, nanotubes were capable of increasing both stress and strain capacity of the composite by controlling the crack propagation process at the tip of the crack.


Sign in / Sign up

Export Citation Format

Share Document